[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Extraction of urban built-up areas from nighttime lights using artificial neural network / Tingting Xu in Geocarto international, vol 35 n° 10 ([01/08/2020])
![]()
[article]
Titre : Extraction of urban built-up areas from nighttime lights using artificial neural network Type de document : Article/Communication Auteurs : Tingting Xu, Auteur ; Giovanni Coco, Auteur ; Jay Gao, Auteur Année de publication : 2020 Article en page(s) : pp 1049 - 1066 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aménagement du territoire
[Termes IGN] bati
[Termes IGN] cartographie urbaine
[Termes IGN] classification dirigée
[Termes IGN] développement durable
[Termes IGN] échantillonnage
[Termes IGN] éclairage public
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] rayonnement lumineux
[Termes IGN] réseau neuronal artificiel
[Termes IGN] seuillage
[Termes IGN] température au sol
[Termes IGN] zone urbaineRésumé : (auteur) The spatial distribution of urban areas at the national and regional scales is critical for urban planners and governments to design sustainable and environment-friendly future development plans. The nighttime lights (NTL) data provide an effective way to monitor the urban at different scales however is usually achieved by using empirical threshold-based algorithms. This study proposed a novel Artificial Neural Network (ANN) approach, using moderate resolution imageries as NTL, MODIS NDVI and land surface temperature data, to map urban areas. Both random and maximum dissimilarity distance algorithm sampling methods were considered and compared. The validation of the urban areas extracted from MDA-based ANN against the 2011 US national land cover data showed a reasonable quality (overall accuracy = 97.84; Kappa = 0.74) and achieved more accurate result than the threshold method. This study demonstrates that ANN can provide an effective, rapid, and accurate alternative in extracting urban built-up areas from NTL. Numéro de notice : A2020-424 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1559887 Date de publication en ligne : 21/03/2019 En ligne : https://doi.org/10.1080/10106049.2018.1559887 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95488
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1049 - 1066[article]Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])
![]()
[article]
Titre : Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method Type de document : Article/Communication Auteurs : Vijendra Singh Bramhe, Auteur ; Sanjay Kumar Ghosh, Auteur ; Pradeep Kumar Garg, Auteur Année de publication : 2020 Article en page(s) : pp 1067 - 1087 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spectrale
[Termes IGN] analyse texturale
[Termes IGN] bati
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] matrice de co-occurrence
[Termes IGN] niveau de gris (image)
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] réseau neuronal artificiel
[Termes IGN] texture d'imageRésumé : (auteur) Information of built-up area is essential for various applications, such as sustainable development or urban planning. Built-up area extraction using optical data is challenging due to spectral confusion between built-up and other classes (bare land or river sand, etc.). Here an automated approach has been proposed to generate built-up maps using spectral-textural features and feature selection techniques. Eight Grey-Level Co-Occurrence Matrix based texture features are extracted using Landsat-8 Operational Land Imager bands and combined with multispectral data. The most informative features are selected from combined spectral-textural dataset using feature selection techniques. Further, Support Vector Machine (SVM) classifiers are trained on labelled samples using optimal features and results are compared with Back Propagation-Neural Network (BP-NN) and k-Nearest Neighbour (k-NN). The results show that inclusion of textural features and applying feature selection methods increases the highest overall accuracy of Linear-SVM, RBF-SVM, BP-NN, and k-NN by 9.20%, 9.09%, 8.42%, and 7.39%, respectively. Numéro de notice : A2020-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1566406 Date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1566406 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95489
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1067 - 1087[article]Landuse and land cover identification and disaggregating socio-economic data with convolutional neural network / Jingtao Yao in Geocarto international, vol 35 n° 10 ([01/08/2020])
![]()
[article]
Titre : Landuse and land cover identification and disaggregating socio-economic data with convolutional neural network Type de document : Article/Communication Auteurs : Jingtao Yao, Auteur ; Xiangbin Kong, Auteur ; Rattan Lal, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1109 - 1123 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] densité de population
[Termes IGN] désagrégation
[Termes IGN] données socio-économiques
[Termes IGN] image Landsat-8
[Termes IGN] occupation du sol
[Termes IGN] utilisation du solRésumé : (auteur) Numéro de notice : A2020-427 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1568587 Date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1568587 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95493
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1109 - 1123[article]Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets / Lamin R. Mansaray in Geocarto international, vol 35 n° 10 ([01/08/2020])
![]()
[article]
Titre : Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Fumin Wang, Auteur ; Jingfeng Huang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1088 - 1108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte de la végétation
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] jeu de données
[Termes IGN] polarisation
[Termes IGN] rizière
[Termes IGN] surface cultivéeRésumé : (auteur) SVM and RF are widely used in rice mapping. However, their performance with single and different combinations of satellite datasets is rarely reported. Hence we report their rice mapping accuracies for two seasons using Sentinel-1A, Landsat-8 and Sentinel-2A images. The VH and VV polarizations of Sentinel-1A, and two spectral indices (SIs) of Landsat-8 and Sentine1-2A were used to obtain seven datasets (VH, VV, SI, VHVV, VHSI, VVSI and VHVVSI), and on which SVM and RF were applied and accuracies were assessed. VHSI showed the highest overall accuracy for both algorithms in both years. SVM with VHSI had a slightly higher accuracy (90.8%) than RF with VHSI (89.2%) in 2015 while in 2016 RF with VHSI showed a slightly higher accuracy (95.2%) than SVM with VHSI (93.4%). Although they produced equivalent accuracies within years, RF is more sensitive to additional data, given a 6.0% increase from 2015 to 2016 with VHSI. Numéro de notice : A2020-443 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1568586 Date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1568586 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95501
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1088 - 1108[article]