|
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -) ![]()
[n° ou bulletin]
|
Réservation
Réserver ce documentExemplaires (3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2020101 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2020103 | DEP-RECP | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2020102 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements


See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning / Zhouxin Xi in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
![]()
[article]
Titre : See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning Type de document : Article/Communication Auteurs : Zhouxin Xi, Auteur ; Christopher Hopkinson, Auteur ; Stewart B. Rood, Auteur ; Derek R. Peddle, Auteur Année de publication : 2020 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] classification
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espèce végétale
[Termes IGN] gestion forestière
[Termes IGN] semis de points
[Termes IGN] variation saisonnièreRésumé : (auteur) Determining tree species composition in natural forests is essential for effective forest management. Species classification at the individual tree level requires fine-scale traits which can be derived through terrestrial laser scanning (TLS) point clouds. A generalizable species classification framework also needs to decouple seasonal foliage variation from deciduous species, for which wood filtering is applicable. Different machine learning and deep learning models are feasible for wood filtering and species classification. We investigated 13 machine learning and deep learning classifiers for 9 species, and 15 classifiers for filtering wood points from TLS plot scans. Each classifier was evaluated using the criteria of mean Intersection over Union accuracy (mIoU), training stability and time cost. On average, deep learning classifiers outperformed machine learning classifiers by 10% and 5% in terms of wood and species classification mIoU, respectively. PointNet++ provided the best species classifier, with the highest mIoU (0.906), stability, and moderate time cost. Among wood classifiers, UNet achieved the top mIoU (0.839) while ResNet-50 was recommended for rapid trial and error testing. Across the classifications, the factors of input resolution, attributes and features were also analyzed. Hot zones of species classification with PointNet++ were visualized to indicate how AI interpret species traits. Numéro de notice : A2020-533 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.08.001 Date de publication en ligne : 10/08/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.08.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95718
in ISPRS Journal of photogrammetry and remote sensing > vol 168 (October 2020) . - pp 1 - 16[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Exploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution / Vitor Martins in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
![]()
[article]
Titre : Exploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution Type de document : Article/Communication Auteurs : Vitor Martins, Auteur ; Amy L. Kaleita, Auteur ; Brian K. Gelder, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 56 - 73 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données multiéchelles
[Termes IGN] hétérogénéité environnementale
[Termes IGN] image à haute résolution
[Termes IGN] occupation du sol
[Termes IGN] reconnaissance d'objets
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] squelettisationRésumé : (auteur) Convolutional Neural Network (CNN) has been increasingly used for land cover mapping of remotely sensed imagery. However, large-area classification using traditional CNN is computationally expensive and produces coarse maps using a sliding window approach. To address this problem, object-based CNN (OCNN) becomes an alternative solution to improve classification performance. However, previous studies were mainly focused on urban areas or small scenes, and implementation of OCNN method is still needed for large-area classification over heterogeneous landscape. Additionally, the massive labeling of segmented objects requires a practical approach for less computation, including object analysis and multiple CNNs. This study presents a new multiscale OCNN (multi-OCNN) framework for large-scale land cover classification at 1-m resolution over 145,740 km2. Our approach consists of three main steps: (i) image segmentation, (ii) object analysis with skeleton-based algorithm, and (iii) application of multiple CNNs for final classification. Also, we developed a large benchmark dataset, called IowaNet, with 1 million labeled images and 10 classes. In our approach, multiscale CNNs were trained to capture the best contextual information during the semantic labeling of objects. Meanwhile, skeletonization algorithm provided morphological representation (“medial axis”) of objects to support the selection of convolutional locations for CNN predictions. In general, proposed multi-OCNN presented better classification accuracy (overall accuracy ~87.2%) compared to traditional patch-based CNN (81.6%) and fixed-input OCNN (82%). In addition, the results showed that this framework is 8.1 and 111.5 times faster than traditional pixel-wise CNN16 or CNN256, respectively. Multiple CNNs and object analysis have proved to be essential for accurate and fast classification. While multi-OCNN produced a high-level of spatial details in the land cover product, misclassification was observed for some classes, such as road versus buildings or shadow versus lake. Despite these minor drawbacks, our results also demonstrated the benefits of IowaNet training dataset in the model performance; overfitting process reduces as the number of samples increases. The limitations of multi-OCNN are partially explained by segmentation quality and limited number of spectral bands in the aerial data. With the advance of deep learning methods, this study supports the claim of multi-OCNN benefits for operational large-scale land cover product at 1-m resolution. Numéro de notice : A2020-634 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.08.004 Date de publication en ligne : 13/08/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.08.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96057
in ISPRS Journal of photogrammetry and remote sensing > vol 168 (October 2020) . - pp 56 - 73[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications / T. Chakraborty in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
![]()
[article]
Titre : A spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications Type de document : Article/Communication Auteurs : T. Chakraborty, Auteur ; A. Hsu, Auteur ; D. Manya, Auteur ; G. Sheriff, Auteur Année de publication : 2020 Article en page(s) : pp 74 - 88 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse socio-économique
[Termes IGN] base de données localisées
[Termes IGN] coefficient de corrélation
[Termes IGN] Etats-Unis
[Termes IGN] ilot thermique urbain
[Termes IGN] image Terra-MODIS
[Termes IGN] milieu urbain
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] variation saisonnièreRésumé : (auteur) The urban heat island (UHI) effect is strongly modulated by urban-scale changes to the aerodynamic, thermal, and radiative properties of the Earth’s land surfaces. Interest in this phenomenon, both from the climatological and public health perspectives, has led to hundreds of UHI studies, mostly conducted on a city-by-city basis. These studies, however, do not provide a complete picture of the UHI for administrative units using a consistent methodology. To address this gap, we characterize clear-sky surface UHI (SUHI) intensities for all urbanized areas in the United States using a modified Simplified Urban-Extent (SUE) approach by combining a fusion of remotely-sensed data products with multiple US census-defined administrative urban delineations. We find the highest daytime SUHI intensities during summer (1.91 ± 0.97 °C) for 418 of the 497 urbanized areas, while the winter daytime SUHI intensity (0.87 ± 0.45 °C) is the lowest in 439 cases. Since urban vegetation has been frequently cited as an effective way to mitigate UHI, we use NDVI, a satellite-derived proxy for live green vegetation, and US census tract delineations to characterize how vegetation density modulates inter-urban, intra-urban, and inter-seasonal variability in SUHI intensity. In addition, we also explore how elevation and distance from the coast confound SUHI estimates. To further quantify the uncertainties in our estimates, we analyze and discuss some limitations of these satellite-derived products across climate zones, particularly issues with using remotely sensed radiometric temperature and vegetation indices as proxies for urban heat and vegetation cover. We demonstrate an application of this spatially explicit dataset, showing that for the majority of the urbanized areas, SUHI intensity is lower in census tracts with higher median income and higher proportion of white people. Our analysis also suggests that poor and non-white urban residents may suffer the possible adverse effects of summer SUHI without reaping the potential benefits (e.g., warmer temperatures) during winter, though establishing this result requires future research using more comprehensive heat stress metrics. This study develops new methodological advancements to characterize SUHI and its intra-urban variability at levels of aggregation consistent with sources of other socioeconomic information, which can be relevant in future inter-disciplinary research and as a possible screening tool for policy-making. The dataset developed in this study is visualized at: https://datadrivenlab.users.earthengine.app/view/usuhiapp. Numéro de notice : A2020-635 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.07.021 Date de publication en ligne : 13/08/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.07.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96058
in ISPRS Journal of photogrammetry and remote sensing > vol 168 (October 2020) . - pp 74 - 88[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Tree species classification using structural features derived from terrestrial laser scanning / Louise Terryn in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
![]()
[article]
Titre : Tree species classification using structural features derived from terrestrial laser scanning Type de document : Article/Communication Auteurs : Louise Terryn, Auteur ; Kim Calders, Auteur ; Mathias I. Disney, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 170 - 181 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] arbre (flore)
[Termes IGN] classification barycentrique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] composition d'un peuplement forestier
[Termes IGN] couvert forestier
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espèce végétale
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] ombre
[Termes IGN] régression logistique
[Termes IGN] semis de pointsRésumé : (auteur) Fast and automated collection of forest data, such as species composition information, is required to support climate mitigation actions. Recently, there have been significant advances in the use of terrestrial laser scanning (TLS) instruments, which facilitate the capture of detailed forest structure. However, for tree species recognition the structural information from TLS has mainly been used to complement spectral information. TLS-only classification studies have been limited in size and diversity of plot forest types. In this paper, we investigate the potential of TLS for tree species classification. We used quantitative structure models to determine 17 structural tree features. These features were computed for 758 trees of five tree species, including two understory species, of a 1.4 hectare mixed deciduous forest plot. Three classification methods were compared: k-nearest neighbours, multinomial logistic regression and support vector machine. We assessed the potential underlying causes for structural differences with principal component analysis. We obtained classification success rates of approximately 80%, however, with producer accuracies for three of the five species ranging from 0 to 60%. Low producer accuracies were the result of a high intra- and low inter-species variability. These effects were, respectively, caused by a high size-dependency of the structural features and a convergence of structural traits across species as a result of the individual tree position in the forest canopy and shade tolerance. Nevertheless, the producer accuracies could be improved through sensitivity vs. specificity trade-offs, with over 50% for all species being obtainable. The high intra -and low inter-species variability complicate the classification. Furthermore, the classification performance and best classification method greatly depend on its targeted application. In conclusion, this study proves the added value of TLS for tree species classification but also shows that TLS opens up potential for testing and further development of ecological theory. Numéro de notice : A2020-636 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.08.009 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.08.009 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96059
in ISPRS Journal of photogrammetry and remote sensing > vol 168 (October 2020) . - pp 170 - 181[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Comparing features of single and multi-photon lidar in boreal forests / Xiaowei Yu in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
![]()
[article]
Titre : Comparing features of single and multi-photon lidar in boreal forests Type de document : Article/Communication Auteurs : Xiaowei Yu, Auteur ; Antero Kukko, Auteur ; Harri Kaartinen, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 268 - 276 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] canopée
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] modèle numérique de surface
[Termes IGN] photon
[Termes IGN] semis de points
[Termes IGN] télémétrie laser aéroportéRésumé : (auteur) The emerging single-photon laser scanning has made technological breakthrough in the collection of airborne laser scanning data. In principle, single-photon systems require only one detected photon for successful ranging. Further, the point density on the ground can be 10–100 times higher for single-photon lidar data than that obtained with multi-photon systems at the same flight altitude. This has great potential to reduce operation costs. Single-photon lidar technology is assumed to be the best for data acquisition when high point densities are required over very large areas, or when improvements in measurement rates can significantly reduce data acquisition costs, such as in nationwide laser scanning programmes, where the whole country is repeatedly covered with data every 5–10 years. This study investigates single-photon lidar and conventional multi-photon laser scanning data for their potential in characterizing ground and forest attributes. Performance is evaluated in a boreal forest by a comparative analysis, where single-photon lidar measurements with SPL100 (Leica/Hexagon) from two flight heights (1900 m and 3800 m) are compared with data from the Optech Titan (400 m) multi-photon airborne laser scanning (ALS) under summer conditions (i.e. leaves on). We found that SPL100 from both altitudes provides forest attribute estimates with comparable accuracy to that of Optech Titan from 400 m using an area-based method. This demonstrates that point density and flight altitude do not have significant impact on forest attribute estimation using the area-based approach. As a result, SPL100 is a cost-efficient alternative to a conventional laser scanner for forest inventories at large scale. There are systematic differences in behavior of the data sets due to differences in ranging sensitivity, beam size, and point density. We observed a higher proportion of ground returns in the SPL100 (3800 m) than in SPL100 (1900 m) data. Both SPL100 data in general produced a higher proportion of ground returns than Titan single channel did in structurally more homogeneous and one layer stands while higher proportion of ground returns from Titan than from SPL100 data in multi-layer stands. Forest structure and flight altitude has a notable impact on the distribution of points and further characteristics of the vertical structures. The pulse of Titan sensor penetrated deeper into the canopy than SPL100. Numéro de notice : A2020-637 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.08.013 Date de publication en ligne : 01/09/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.08.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96060
in ISPRS Journal of photogrammetry and remote sensing > vol 168 (October 2020) . - pp 268 - 276[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt