[n° ou bulletin]
est un bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences / International society for photogrammetry and remote sensing (1980 -) (2012 - ) ![]()
[n° ou bulletin]
| ![]() |
Dépouillements


Opportunities and challenges for augmented reality situated geographical visualization / María-Jesús Lobo in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2020 (August 2020)
![]()
[article]
Titre : Opportunities and challenges for augmented reality situated geographical visualization Type de document : Article/Communication Auteurs : María-Jesús Lobo , Auteur ; Sidonie Christophe
, Auteur
Année de publication : 2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 4, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 4 Article en page(s) : pp 163 - 170 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] réalité augmentée
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Augmented reality (AR) enables to display situated geographical visualizations, i.e visualizations that use virtual elements that are displayed in a geographical location. The place where the data is displayed complements the visualization. Many applications that take advantage of AR and situated visualizations exist, but they differ in the visualizations they present, their relationship to the geographic locations and goals. To better understand why and how AR based situated geovisualization is used, we review 45 papers coming from Human Computer Interaction, Visualization and Geographical Information Science venues that present such applications. Inspired by existing classifications, we characterize these papers according to the data they visualize and the geographical distance between the visualization and the data the visualization represents. This analysis reveals existing opportunities for situated geovisualization applications using AR. Numéro de notice : A2020-462 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-4-2020-163-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-4-2020-163-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95529
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-4-2020 (August 2020) . - pp 163 - 170[article]A regression model of spatial accuracy prediction for Openstreetmap buildings / Ibrahim Maidaneh Abdi in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2020 (August 2020)
![]()
[article]
Titre : A regression model of spatial accuracy prediction for Openstreetmap buildings Type de document : Article/Communication Auteurs : Ibrahim Maidaneh Abdi , Auteur ; Arnaud Le Guilcher
, Auteur ; Ana-Maria Olteanu-Raimond
, Auteur
Année de publication : 2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 4, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 4 Article en page(s) : pp 39 - 47 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] apprentissage automatique
[Termes IGN] bati
[Termes IGN] modèle de régression
[Termes IGN] OpenStreetMap
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] qualité des donnéesRésumé : (auteur) Data quality assessment of OpenStreetMap (OSM) data can be carried out by comparing them with a reference spatial data (e.g authoritative data). However, in case of a lack of reference data, the spatial accuracy is unknown. The aim of this work is therefore to propose a framework to infer relative spatial accuracy of OSM data by using machine learning methods. Our approach is based on the hypothesis that there is a relationship between extrinsic and intrinsic quality measures. Thus, starting from a multi-criteria data matching, the process seeks to establish a statistical relationship between measures of extrinsic quality of OSM (i.e. obtained by comparison with reference spatial data) and the measures of intrinsic quality of OSM (i.e. OSM features themselves) in order to estimate extrinsic quality on an unevaluated OSM dataset. The approach was applied on OSM buildings. On our dataset, the resulting regression model predicts the values on the extrinsic quality indicators with 30% less variance than an uninformed predictor. Numéro de notice : A2020-506 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-4-2020-39-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-4-2020-39-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95647
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-4-2020 (August 2020) . - pp 39 - 47[article]