|
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -) ![]()
[n° ou bulletin]
| ![]() |
Dépouillements


Deriving a frozen area fraction from Metop ASCAT backscatter based on Sentinel-1 / Helena Bergstedt in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Deriving a frozen area fraction from Metop ASCAT backscatter based on Sentinel-1 Type de document : Article/Communication Auteurs : Helena Bergstedt, Auteur ; Annett Bartsch, Auteur ; Anton Neureiter, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6008 - 6019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Autriche
[Termes IGN] bande C
[Termes IGN] courbe de Pearson
[Termes IGN] dégel
[Termes IGN] Finlande
[Termes IGN] fonte des glaces
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image MetOp-ASCAT
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] pergélisol
[Termes IGN] rétrodiffusion
[Termes IGN] série temporelle
[Termes IGN] télédétection en hyperfréquence
[Termes IGN] température au solRésumé : (auteur) Surface state data derived from spaceborne microwave sensors with suitable temporal sampling are to date only available in low spatial resolution (25–50 km). Current approaches do not adequately resolve spatial heterogeneity in landscape-scale freeze–thaw processes. We propose to derive a frozen fraction instead of binary freeze–thaw information. This introduces the possibility to monitor the gradual freezing and thawing of complex landscapes. Frozen fractions were retrieved from Advanced Scatterometer (ASCAT, C-band) backscatter on a 12.5-km grid for three sites in noncontinuous permafrost areas in northern Finland and the Austrian Alps. To calibrate the retrieval approach, frozen fractions based on Sentinel-1 synthetic aperture radar (SAR, C-band) were derived for all sites and compared to ASCAT backscatter. We found strong relationships for ASCAT backscatter with Sentinel-1 derived frozen fractions (Pearson correlations of −0.85 to −0.96) for the sites in northern Finland and less strong relationships for the Alpine site (Pearson correlations −0.579 and −0.611, including and excluding forested areas). Applying the derived linear relationships, predicted frozen fractions using ASCAT backscatter values showed root mean square error (RMSE) values between 7.26% and 16.87% when compared with Sentinel-1 frozen fractions. The validation of the Sentinel-1 derived freeze–thaw classifications showed high accuracy when compared to in situ near-surface soil temperature (84.7%–94%). Results are discussed with regard to landscape type, differences between spring and autumn, and gridding. This article serves as a proof of concept, showcasing the possibility to derive frozen fraction from coarse spatial resolution scatterometer time series to improve the representation of spatial heterogeneity in landscape-scale surface state. Numéro de notice : A2020-525 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2967364 Date de publication en ligne : 13/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2967364 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95702
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6008 - 6019[article]Crater detection and registration of planetary images through marked point processes, multiscale decomposition, and region-based analysis / David Solarna in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Crater detection and registration of planetary images through marked point processes, multiscale decomposition, and region-based analysis Type de document : Article/Communication Auteurs : David Solarna, Auteur ; Alberto Gotelli, Auteur ; Jacqueline Le Moigne, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6039 - 6058 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cratère
[Termes IGN] détection de contours
[Termes IGN] distance de Hausdorff
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image multitemporelle
[Termes IGN] image thermique
[Termes IGN] Mars (planète)
[Termes IGN] ondelette
[Termes IGN] processus ponctuel marqué
[Termes IGN] séparateur à vaste marge
[Termes IGN] transformation de Hough
[Termes IGN] zone d'intérêtRésumé : (auteur) Because of the large variety of planetary sensors and spacecraft already collecting data and with many new and improved sensors being planned for future missions, planetary science needs to integrate numerous multimodal image sources, and, as a consequence, accurate and robust registration algorithms are required. In this article, we develop a new framework for crater detection based on marked point processes (MPPs) that can be used for planetary image registration. MPPs were found to be effective for various object detection tasks in Earth observation, and a new MPP model is proposed here for detecting craters in planetary data. The resulting spatial features are exploited for registration, together with fitness functions based on the MPP energy, on the mean directed Hausdorff distance, and on the mutual information. Two different methods—one based on birth–death processes and region-of-interest analysis and the other based on graph cuts and decimated wavelets—are developed within the proposed framework. Experiments with a large set of images, including 13 thermal infrared and visible images of the Mars surface, 20 semisimulated multitemporal pairs of images of the Mars surface, and a real multitemporal image pair of the Lunar surface, demonstrate the effectiveness of the proposed framework in terms of crater detection performance as well as for subpixel registration accuracy. Numéro de notice : A2020-526 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2970908 Date de publication en ligne : 18/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2970908 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95704
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6039 - 6058[article]CSVM architectures for pixel-wise object detection in high-resolution remote sensing images / Youyou Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : CSVM architectures for pixel-wise object detection in high-resolution remote sensing images Type de document : Article/Communication Auteurs : Youyou Li, Auteur ; Farid Melgani, Auteur ; Binbin He, Auteur Année de publication : 2020 Article en page(s) : pp 6059 - 6070 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image captée par drone
[Termes IGN] processeur graphiqueRésumé : (auteur) Detecting objects becomes an increasingly important task in very high resolution (VHR) remote sensing imagery analysis. With the development of GPU-computing capability, a growing number of deep convolutional neural networks (CNNs) have been designed to address the object detection challenge. However, compared with CPU, GPU is much more costly. Therefore, GPU-based methods are less attractive in practical applications. In this article, we propose a CPU-based method that is based on convolutional support vector machines (CSVMs) to address the object detection challenge in VHR images. Experiments are conducted on three VHR and two unmanned aerial vehicle (UAV) data sets with very limited training data. Results show that the proposed CSVM achieves competitive performance compared to U-Net which is an efficient CNN-based model designed for small training data sets. Numéro de notice : A2020-527 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2972289 Date de publication en ligne : 02/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2972289 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95705
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6059 - 6070[article]Pansharpening: context-based generalized Laplacian pyramids by robust regression / Gemine Vivone in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Pansharpening: context-based generalized Laplacian pyramids by robust regression Type de document : Article/Communication Auteurs : Gemine Vivone, Auteur ; Stefano Marano, Auteur ; Jocelyn Chanussot, Auteur Année de publication : 2020 Article en page(s) : pp 6152 - 6167 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multirésolution
[Termes IGN] fonction de transfert de modulation
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] lissage de données
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] régression
[Termes IGN] transformation en ondelettesRésumé : (auteur) Pansharpening refers to the combination of panchromatic (PAN) and multispectral (MS) images, designed to obtain a fused product retaining the fine spatial resolution of the former and the high spectral content of the latter. One of the most popular and successful approaches to pansharpening is the method known as context-based generalized Laplacian pyramid, which requires as a key ingredient for the estimation of the so-called injection coefficients. In this article, we propose the adoption of robust techniques for the estimation of the injection coefficients and detection strategies to select the clusters for which robust regression is needed, providing a suitable balancing between fusion performance and computational burden. Experimental results conducted on five real data sets acquired by the sensors QuickBird, WorldView-3, and WorldView-4, show the superiority of the proposed method with respect to current state-of-the-art pansharpening techniques. Numéro de notice : A2020-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2974806 Date de publication en ligne : 04/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2974806 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95706
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6152 - 6167[article]Multiscale supervised kernel dictionary learning for SAR target recognition / Lei Tao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Multiscale supervised kernel dictionary learning for SAR target recognition Type de document : Article/Communication Auteurs : Lei Tao, Auteur ; Xue Jiang, Auteur ; Xingzhao Liu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6281 - 6297 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage automatique
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] détection de cible
[Termes IGN] erreur de classification
[Termes IGN] image radar moirée
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] reconstruction d'imageRésumé : (auteur) In this article, a supervised nonlinear dictionary learning (DL) method, called multiscale supervised kernel DL (MSK-DL), is proposed for target recognition in synthetic aperture radar (SAR) images. We use Frost filters with different parameters to extract an SAR image’s multiscale features for data augmentation and noise suppression. In order to reduce the computation cost, the dimension of each scale feature is reduced by principal component analysis (PCA). Instead of the widely used linear DL, we learn multiple nonlinear dictionaries to capture the nonlinear structure of data by introducing the dimension-reduced features into the nonlinear reconstruction error terms. A classification model, which is defined as a discriminative classification error term, is learned simultaneously. Hence, the objective function contains the nonlinear reconstruction error terms and a classification error term. Two optimization algorithms, called multiscale supervised kernel K-singular value decomposition (MSK-KSVD) and multiscale supervised incremental kernel DL (MSIK-DL), are proposed to compute the multidictionary and the classifier. Experiments on the moving and stationary target automatic recognition (MSTAR) data set are performed to evaluate the effectiveness of the two proposed algorithms. And the experimental results demonstrate that the proposed scheme outperforms some representative common machine learning strategies, state-of-the-art convolutional neural network (CNN) models and some representative DL methods, especially in terms of its robustness against training set size and noise. Numéro de notice : A2020-529 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2976203 Date de publication en ligne : 03/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2976203 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95709
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6281 - 6297[article]Ship detection in SAR images via local contrast of Fisher vectors / Xueqian Wang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Ship detection in SAR images via local contrast of Fisher vectors Type de document : Article/Communication Auteurs : Xueqian Wang, Auteur ; Gang Li, Auteur ; Xiao-Ping Zhang, Auteur ; You He, Auteur Année de publication : 2020 Article en page(s) : pp 6467 - 6479 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] contraste local
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] distribution de Fisher
[Termes IGN] fouillis d'échos
[Termes IGN] image radar moirée
[Termes IGN] navire
[Termes IGN] processus gaussien
[Termes IGN] rapport signal sur bruit
[Termes IGN] superpixelRésumé : (auteur) Existing superpixel-based detection algorithms for ship targets in synthetic aperture radar (SAR) images are often derived from the local contrast of intensities (i.e., the local contrast of the first-order information of superpixels) leading to deteriorating performance in low signal-to-clutter ratio (SCR) cases due to the low contrast between the intensities of targets and the clutter. In this article, we propose a new superpixel-based detector to improve the performance of ship target detection in SAR images via the local contrast of fisher vectors (LCFVs). The new LCFV-based detector exploits multiorder features of the superpixels based on the Gaussian mixture model (GMM) and accordingly improves the discrimination capability between the ship targets and the sea clutter, especially in low SCR cases. Experimental results demonstrate that the proposed LCFV-based detection algorithm provides better detection performance than the commonly used detection algorithms. Numéro de notice : A2020-530 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2976880 Date de publication en ligne : 18/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2976880 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95713
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6467 - 6479[article]A novel algorithm to estimate phytoplankton carbon concentration in inland lakes using Sentinel-3 OLCI images / Heng Lyu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : A novel algorithm to estimate phytoplankton carbon concentration in inland lakes using Sentinel-3 OLCI images Type de document : Article/Communication Auteurs : Heng Lyu, Auteur ; Zhiqian Yang, Auteur ; Lei Shi, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6512 - 6523 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] changement climatique
[Termes IGN] Chine
[Termes IGN] chlorophylle
[Termes IGN] corrélation
[Termes IGN] image Sentinel-OLCI
[Termes IGN] lac
[Termes IGN] plancton
[Termes IGN] réflectance
[Termes IGN] série temporelle
[Termes IGN] teneur en carboneRésumé : (auteur) Phytoplankton carbon, an important biogeochemical and ecological parameter, plays a critical role in the carbon cycle and in global warming reduction. Estimation of phytoplankton carbon in inland waters on a large scale using remote sensing is useful for understanding, evaluating, and monitoring the carbon dynamics, and, in particular, for determining the spatial–temporal variation of primary production in inland waters. In a correlation analysis of the phytoplankton carbon concentration and water components, the result revealed no significant correlation between the chlorophyll-a concentration and phytoplankton carbon concentration in inland waters. However, the absorption peak height of particles at 675 nm, which is defined as the absorption at 675 nm subtracted by that at 660 nm, was found to be closely correlated with the phytoplankton carbon concentration. Thus, the absorption peak height of particles at 675 nm could be used as an indicator of the phytoplankton carbon concentration. A semianalytical method based on the remote-sensing reflectance in Sentinel-3 Ocean and Land Color Instrument (OLCI) bands 8, 9, and 17 was developed to derive the absorption peak of particles at a wavelength of 675 nm. Finally, an algorithm for estimating the phytoplankton carbon concentration in inland waters using OLCI bands 8, 9, and 17 was constructed. From 2013 to 2018, eight field campaigns were conducted in inland lakes in different seasons, and the optical properties, optically active water components, and phytoplankton carbon concentrations were obtained. An assessment of its accuracy using an independent data set demonstrated that the algorithm performance is acceptable (mean absolute percentage error, 48.6%, and root mean square error, 0.36 mg/L). As a demonstration, the algorithm was successfully applied to map the phytoplankton carbon concentration in Taihu Lake and Chaohu Lake, China, using OLCI images acquired on December 5, 2017, and August 5, 2018 and December 8, 2... Numéro de notice : A2020-531 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2977080 Date de publication en ligne : 12/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2977080 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95714
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6512 - 6523[article]Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection / Zeyang Dou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection Type de document : Article/Communication Auteurs : Zeyang Dou, Auteur ; Kun Gao, Auteur ; Xiaodian Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6550 - 6564 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] distribution de Gauss
[Termes IGN] erreur
[Termes IGN] image hyperspectrale
[Termes IGN] reconstruction d'image
[Termes IGN] valeur aberranteRésumé : (auteur) Hyperspectral unmixing, which estimates end-members and their corresponding abundance fractions simultaneously, is an important task for hyperspectral applications. In this article, we propose a new autoencoder-based hyperspectral unmixing model with three novel components. First, we propose a new sparse prior to abundance maps. The proposed prior, called orthogonal sparse prior (OSP), is based on the observations that different abundance maps are close to orthogonal because, generally, no more than two end-members are mixed within one pixel. As opposed to the conventional norm-based sparse prior that assumes the abundance maps are independent, the proposed OSP explores the orthogonality between the abundance maps. Second, we propose the hyper-Laplacian loss to model the reconstruction error. The key observation is that the reconstruction error distribution usually has a heavy-tailed shape, which is better modeled by the hyper-Laplacian distribution rather than the commonly used Gaussian distribution. Third, to ease the side effect of outliers for end-member initializations, we develop a data-driven approach to detect outliers from the raw hyperspectral images. Extensive experiments on both synthetic and real-world data sets show that the proposed method significantly and consistently outperforms the compared state-of-the-art methods, with up to more than 50% improvements. Numéro de notice : A2020-532 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2977819 Date de publication en ligne : 16/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2977819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95715
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6550 - 6564[article]