[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Monitoring population dynamics in the Pearl River Delta from 2000 to 2010 / Sisi Yu in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Monitoring population dynamics in the Pearl River Delta from 2000 to 2010 Type de document : Article/Communication Auteurs : Sisi Yu, Auteur ; ZengXiang Zhang, Auteur ; Fang Liu, Auteur Année de publication : 2020 Article en page(s) : pp 1511 - 1526 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] agglomération
[Termes descripteurs IGN] croissance urbaine
[Termes descripteurs IGN] delta de la rivière des perles
[Termes descripteurs IGN] données démographiques
[Termes descripteurs IGN] image DMSP-OLS
[Termes descripteurs IGN] Kouangtoung (Chine)
[Termes descripteurs IGN] prise de vue nocturne
[Termes descripteurs IGN] recensement démographique
[Termes descripteurs IGN] répartition géographique
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance de l'urbanisationRésumé : (auteur) Although numerous literatures have documented the monitoring of population distributions and dynamics for socio-economic development, environmental protection, and urban planning on different scales, little attention has been paid to long-term and multi-frequency population evolution on urban agglomeration scale, especially in non-census years. Furthermore, although multi models have been applied to population spatialization based on night-time light imagery (NLT) and census data, their accuracy needs to be further improved. Selected the Pearl River Delta (PRD), China as the study area, this work aimed to solve the aforementioned problems by constructing the residential extent extraction index (REEI) and employing the population growth theory and ‘DN density–population density’ model. Results indicated that the proposed approaches were feasible to optimize NTL products and simulate populations in both census (2000, 2010) and non-census (2005) years. Population evolution in the PRD presented distinct differences from space and over time, and mainly driven by socioeconomic development. Numéro de notice : A2020-617 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1576778 date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1080/10106049.2019.1576778 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95993
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1511 - 1526[article]Textural classification of remotely sensed images using multiresolution techniques / Rizwan Ahmed Ansari in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Textural classification of remotely sensed images using multiresolution techniques Type de document : Article/Communication Auteurs : Rizwan Ahmed Ansari, Auteur ; Krishna Mohan Buddhiraju, Auteur ; Avik Bhattacharya, Auteur Année de publication : 2020 Article en page(s) : pp 1580 - 1602 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] analyse multirésolution
[Termes descripteurs IGN] analyse texturale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] distance euclidienne
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] texture d'image
[Termes descripteurs IGN] transformation en ondelettesRésumé : (auteur) Multiresolution analysis (MRA) methods have been successfully used in texture analysis. Texture analysis is widely discussed in literature, but most of the methods which do not employ multiresolution strategy cannot exploit the fact that texture occurs at various spatial scales. This paper proposes a methodology to identify different classes in satellite images using texture features from newly developed multiresolution methods. The proposed method is tested on remotely sensed optical images and a Pauli RGB decomposed version of synthetic aperture radar image. The textural information is extracted at various scales and in different directions from curvelet and contourlet transforms. The results are compared with wavelet-based features. Accuracy assessment is performed and comparative analysis is carried out using minimum distance to mean, support vector machine and random forest classifiers. It is found that the proposed method shows better class discriminating power and classification capability as compared to existing wavelet-based method. Numéro de notice : A2020-618 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581263 date de publication en ligne : 15/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581263 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95994
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1580 - 1602[article]Object-based classification of mixed forest types in Mongolia / E. Nyamjargal in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Object-based classification of mixed forest types in Mongolia Type de document : Article/Communication Auteurs : E. Nyamjargal, Auteur ; D. Amarsaikhan, Auteur ; A. Munkh-Erdene, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1615 - 1626 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] approche pixel
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] Mongolie
[Termes descripteurs IGN] peuplement mélangéRésumé : (auteur) The aim of this study is to produce updated forest map of the Bogdkhan Mountain, Mongolia using multitemporal Sentinel-2A images. The target area has highly mixed forest types and it is very difficult to differentiate the fuzzy boundaries among different forest types. To extract the forest class information, an object-based classification technique is applied and a rule-base to separate the mixed classes is developed. The rule-base uses a hierarchy of rules describing different conditions under which the actual classification has to be performed. To compare the result of the developed method with a result of a pixel-based approach, a Bayesian maximum likelihood classification is applied. The final result indicates overall accuracy of 90.87% for the object-based classification, while for the pixel-based approach it is 79.89%. Overall, the research indicates that the object-based method that uses a thoroughly defined segmentation and a well-constructed rule-base can significantly improve the classification of mixed forest types and produce of a reliable forest map. Numéro de notice : A2020-619 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1583775 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1583775 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95995
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1615 - 1626[article]Time series potential assessment for biophysical characterization of orchards and crops in a mixed scenario with Sentinel-1A SAR data / Hemant Sahu in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Time series potential assessment for biophysical characterization of orchards and crops in a mixed scenario with Sentinel-1A SAR data Type de document : Article/Communication Auteurs : Hemant Sahu, Auteur ; Dipanwita Haldar, Auteur ; Abhishek Danodia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1627 - 1639 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] coefficient de rétrodiffusion
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] modèle de rétrodiffusion
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] variable biophysique (végétation)
[Termes descripteurs IGN] vergerRésumé : (auteur) Potential of Sentinel-1A SAR data was assessed for the time-series analysis of orchard biophysical parameters and crop system. The study revealed characteristics variations in the backscatter coefficient with respect to time and polarization for age in VH polarization than in VV and ratio of VV/VH polarization showing discrimination of young orchard particularly in VV polarization. The parameter of the orchard (age, DBH, canopy radius and visual height) shows a promising relationship with backscatter coefficient. Out of several regression models, VV channel responds with a fair regression coefficient of 0.54, 0.52, 0.48 and 0.44 for height with rmse of 0.5, 1.3, 0.7 and 0.6 for age, DBH, canopy radius and visual height, respectively. Multiple regression coefficient of 0.61 was observed for January 2018 in VV polarization as best date for study. These empirical relationships have potential for the inverse backscatter modelling. Numéro de notice : A2020-620 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1583776 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1583776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96003
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1627 - 1639[article]