|
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Wide-area near-real-time monitoring of tropical forest degradation and deforestation using Sentinel-1 / Dirk Hoekman in Remote sensing, vol 12 n° 19 (October 2020)
![]()
[article]
Titre : Wide-area near-real-time monitoring of tropical forest degradation and deforestation using Sentinel-1 Type de document : Article/Communication Auteurs : Dirk Hoekman, Auteur ; Boris Kooij, Auteur ; Marcela J. Quiñones, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 32 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Amazonie
[Termes descripteurs IGN] Bornéo, île de
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] dégradation de l'environnement
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] image radar
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] image TerraSAR-X
[Termes descripteurs IGN] modèle physique
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance forestière
[Termes descripteurs IGN] tourbièreRésumé : (auteur) The use of Sentinel-1 (S1) radar for wide-area, near-real-time (NRT) tropical-forest-change monitoring is discussed, with particular attention to forest degradation and deforestation. Since forest change can relate to processes ranging from high-impact, large-scale conversion to low-impact, selective logging, and can occur in sites having variable topographic and environmental properties such as mountain slopes and wetlands, a single approach is insufficient. The system introduced here combines time-series analysis of small objects identified in S1 data, i.e., segments containing linear features and apparent small-scale disturbances. A physical model is introduced for quantifying the size of small (upper-) canopy gaps. Deforestation detection was evaluated for several forest landscapes in the Amazon and Borneo. Using the default system settings, the false alarm rate (FAR) is very low (less than 1%), and the missed detection rate (MDR) varies between 1.9% ± 1.1% and 18.6% ± 1.0% (90% confidence level). For peatland landscapes, short radar detection delays up to several weeks due to high levels of soil moisture may occur, while, in comparison, for optical systems, detection delays up to 10 months were found due to cloud cover. In peat swamp forests, narrow linear canopy gaps (road and canal systems) could be detected with an overall accuracy of 85.5%, including many gaps barely visible on hi-res SPOT-6/7 images, which were used for validation. Compared to optical data, subtle degradation signals are easier to detect and are not quickly lost over time due to fast re-vegetation. Although it is possible to estimate an effective forest-cover loss, for example, due to selective logging, and results are spatiotemporally consistent with Sentinel-2 and TerraSAR-X reference data, quantitative validation without extensive field data and/or large hi-res radar datasets, such as TerraSAR-X, remains a challenge. Numéro de notice : A2020-633 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs12193263 date de publication en ligne : 08/10/2020 En ligne : https://doi.org/10.3390/rs12193263 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96056
in Remote sensing > vol 12 n° 19 (October 2020) . - 32 p.[article]