|
[n° ou bulletin]
est un bulletin de ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) (2012 -) ![]()
[n° ou bulletin]
|
Dépouillements


Using climate-sensitive 3D city modeling to analyze outdoor thermal comfort in urban areas / Rabeeh Hosseinihaghighi in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Using climate-sensitive 3D city modeling to analyze outdoor thermal comfort in urban areas Type de document : Article/Communication Auteurs : Rabeeh Hosseinihaghighi, Auteur ; Fatemeh Izadi, Auteur ; Rushikesh Padsala, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 688 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] albedo
[Termes IGN] arbre urbain
[Termes IGN] ArcGIS
[Termes IGN] changement climatique
[Termes IGN] CityEngine
[Termes IGN] climat urbain
[Termes IGN] distribution spatiale
[Termes IGN] gestion urbaine
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modèle de simulation
[Termes IGN] Montréal (Québec)
[Termes IGN] planification urbaine
[Termes IGN] températureRésumé : (auteur) With increasing urbanization, climate change poses an unprecedented threat, and climate-sensitive urban management is highly demanded. Mitigating climate change undoubtedly requires smarter urban design tools and techniques than ever before. With the continuous evolution of geospatial technologies and an added benefit of analyzing and virtually visualizing our world in three dimensions, the focus is now shifting from a traditional 2D to a more complicated 3D spatial design and assessment with increasing potential of supporting climate-responsive urban decisions. This paper focuses on using 3D city models to calculate the mean radiant temperature (Tmrt) as an outdoor thermal comfort indicator in terms of assessing the spatiotemporal distribution of heat stress on the district scale. The analysis is done to evaluate planning scenarios for a district transformation in Montreal/Canada. The research identifies a systematic workflow to assess and upgrade the outdoor thermal comfort using the contribution of ArcGIS CityEngine for 3D city modeling and the open-source model of solar longwave environmental irradiance geometry (SOLWEIG) as the climate assessment model. A statistically downscaled weather profile for the warmest year predicted before 2050 (2047) is used for climate data. The outcome shows the workflow capacity for the structured recognition of area under heat stress alongside supporting the efficient intervention, the tree placement as a passive strategy of heat mitigation. The adaptability of workflow with the various urban scale makes it an effective response to the technical challenges of urban designers for decision-making and action planning. However, the discovered technical issues in data conversion and wall surface albedo processing call for the climate assessment model improvement as future demand. Numéro de notice : A2020-728 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110688 Date de publication en ligne : 19/11/2020 En ligne : https://doi.org/10.3390/ijgi9110688 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96335
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 688[article]Worldwide detection of informal settlements via topological analysis of crowdsourced digital maps / Satej Soman in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Worldwide detection of informal settlements via topological analysis of crowdsourced digital maps Type de document : Article/Communication Auteurs : Satej Soman, Auteur ; Anni Beukes, Auteur ; Cooper Nederhood, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 685 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] carte numérique
[Termes IGN] cartographie urbaine
[Termes IGN] croissance urbaine
[Termes IGN] données localisées
[Termes IGN] données localisées des bénévoles
[Termes IGN] infrastructure
[Termes IGN] Liberia
[Termes IGN] OpenStreetMap
[Termes IGN] planification urbaine
[Termes IGN] relation topologique
[Termes IGN] Sierra Leone
[Termes IGN] urbanismeRésumé : (auteur) The recent growth of high-resolution spatial data, especially in developing urban environments, is enabling new approaches to civic activism, urban planning and the provision of services necessary for sustainable development. A special area of great potential and urgent need deals with urban expansion through informal settlements (slums). These neighborhoods are too often characterized by a lack of connections, both physical and socioeconomic, with detrimental effects to residents and their cities. Here, we show how a scalable computational approach based on the topological properties of digital maps can identify local infrastructural deficits and propose context-appropriate minimal solutions. We analyze 1 terabyte of OpenStreetMap (OSM) crowdsourced data to create worldwide indices of street block accessibility and local cadastral maps and propose infrastructure extensions with a focus on 120 Low and Middle Income Countries (LMICs) in the Global South. We illustrate how the lack of physical accessibility can be identified in detail, how the complexity and costs of solutions can be assessed and how detailed spatial proposals are generated. We discuss how these diagnostics and solutions provide a multiscalar set of new capabilities—from individual neighborhoods to global regions—that can coordinate local community knowledge with political agency, technical capability, and further research. Numéro de notice : A2020-729 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110685 Date de publication en ligne : 16/11/2020 En ligne : https://doi.org/10.3390/ijgi9110685 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96336
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 685[article]Unfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation / Boxi Shen in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Unfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation Type de document : Article/Communication Auteurs : Boxi Shen, Auteur ; Xiang Xu, Auteur ; Jun Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 683 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] appariement de cartes
[Termes IGN] estimation par noyau
[Termes IGN] mobilité urbaine
[Termes IGN] modèle conceptuel de données localisées
[Termes IGN] modèle conceptuel de flux
[Termes IGN] Shenzhen
[Termes IGN] taxi
[Termes IGN] trafic routier
[Termes IGN] trafic urbain
[Termes IGN] trajet (mobilité)Résumé : (auteur) Taxi mobility data plays an important role in understanding urban mobility in the context of urban traffic. Specifically, the taxi is an important part of urban transportation, and taxi trips reflect human behaviors and mobility patterns, allowing us to identify the spatial variety of such patterns. Although taxi trips are generated in the form of network flows, previous works have rarely considered network flow patterns in the analysis of taxi mobility data; Instead, most works focused on point patterns or trip patterns, which may provide an incomplete snapshot. In this work, we propose a novel approach to explore the spatial-temporal patterns of taxi travel by considering point, trip and network flow patterns in a simultaneous fashion. Within this approach, an improved network kernel density estimation (imNKDE) method is first developed to estimate the density of taxi trip pick-up and drop-off points (ODs). Next, the correlation between taxi service activities (i.e., ODs) and land-use is examined. Then, the trip patterns of taxi trips and its corresponding routes are analyzed to reveal the correlation between trips and road structure. Finally, network flow analysis for taxi trip among areas of varying land-use types at different times are performed to discover spatial and temporal taxi trip ODs from a new perspective. A case study in the city of Shenzhen, China, is thoroughly presented and discussed for illustrative purposes. Numéro de notice : A2020-730 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110683 Date de publication en ligne : 15/11/2020 En ligne : https://doi.org/10.3390/ijgi9110683 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96337
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 683[article]Evaluating geo-tagged Twitter data to analyze tourist flows in Styria, Austria / Johannes Scholz in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Evaluating geo-tagged Twitter data to analyze tourist flows in Styria, Austria Type de document : Article/Communication Auteurs : Johannes Scholz, Auteur ; Janja Jeznik, Auteur Année de publication : 2020 Article en page(s) : n° 681 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Autriche
[Termes IGN] coefficient de corrélation
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] distribution spatiale
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] segmentation sémantique
[Termes IGN] tourisme
[Termes IGN] TwitterRésumé : (auteur) The research focuses on detecting tourist flows in the Province of Styria in Austria based on crowdsourced data. Twitter data were collected in the time range from 2008 until August 2018. Extracted tweets were submitted to an extensive filtering process within non-relational database MongoDB. Hotspot Analysis and Kernel Density Estimation methods were applied, to investigate spatial distribution of tourism relevant tweets under temporal variations. Furthermore, employing the VADER method an integrated semantic analysis provides sentiments of extracted tweets. Spatial analyses showed that detected Hotspots correspond to typical Styrian touristic areas. Apart from mainly successful sentiment analysis, it pointed out also a problematic aspect of working with multilingual data. For evaluation purposes, the official tourism data from the Province of Styria and federal Statistical Office of Austria played a role of ground truth data. An evaluation with Pearson’s correlation coefficient was employed, which proves a statistically significant correlation between Twitter data and reference data. In particular, the paper shows that crowdsourced data on a regional level can serve as accurate indicator for the behaviour and movement of users. Numéro de notice : A2020-731 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110681 Date de publication en ligne : 15/11/2020 En ligne : https://doi.org/10.3390/ijgi9110681 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96344
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 681[article]Building change detection using a shape context similarity model for LiDAR data / Xuzhe Lyu in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Building change detection using a shape context similarity model for LiDAR data Type de document : Article/Communication Auteurs : Xuzhe Lyu, Auteur ; Ming Hao, Auteur ; Wenzhong Shi, Auteur Année de publication : 2020 Article en page(s) : n° 678 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse d'image orientée objet
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] fusion d'images
[Termes IGN] modèle numérique de surface
[Termes IGN] reconnaissance de formes
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (auteur) In this paper, a novel building change detection approach is proposed using statistical region merging (SRM) and a shape context similarity model for Light Detection and Ranging (LiDAR) data. First, digital surface models (DSMs) are generated from LiDAR acquired at two different epochs, and the difference data D-DSM is created by difference processing. Second, to reduce the noise and registration error of the pixel-based method, the SRM algorithm is applied to segment the D-DSM, and multi-scale segmentation results are obtained under different scale values. Then, the shape context similarity model is used to calculate the shape similarity between the segmented objects and the buildings. Finally, the refined building change map is produced by the k-means clustering method based on shape context similarity and area-to-length ratio. The experimental results indicated that the proposed method could effectively improve the accuracy of building change detection compared with some popular change detection methods. Numéro de notice : A2020-732 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110678 Date de publication en ligne : 15/11/2020 En ligne : https://doi.org/10.3390/ijgi9110678 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96345
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 678[article]Combination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
![]()
[article]
Titre : Combination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia Type de document : Article/Communication Auteurs : Sanjiwana Arjasakusuma, Auteur ; Sandiaga Swahyu Kusuma, Auteur ; Raihan Rafif, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 663 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] bande C
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-OLI
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] Java (île de)
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Built-up Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Normalized Difference Water Index
[Termes IGN] polarisation
[Termes IGN] rizière
[Termes IGN] série temporelleRésumé : (auteur) The rise of Google Earth Engine, a cloud computing platform for spatial data, has unlocked seamless integration for multi-sensor and multi-temporal analysis, which is useful for the identification of land-cover classes based on their temporal characteristics. Our study aims to employ temporal patterns from monthly-median Sentinel-1 (S1) C-band synthetic aperture radar data and cloud-filled monthly spectral indices, i.e., Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), and Normalized Difference Built-up Index (NDBI), from Landsat 8 (L8) OLI for mapping rice cropland areas in the northern part of Central Java Province, Indonesia. The harmonic function was used to fill the cloud and cloud-masked values in the spectral indices from Landsat 8 data, and smile Random Forests (RF) and Classification And Regression Trees (CART) algorithms were used to map rice cropland areas using a combination of monthly S1 and monthly harmonic L8 spectral indices. An additional terrain variable, Terrain Roughness Index (TRI) from the SRTM dataset, was also included in the analysis. Our results demonstrated that RF models with 50 (RF50) and 80 (RF80) trees yielded better accuracy for mapping the extent of paddy fields, with user accuracies of 85.65% (RF50) and 85.75% (RF80), and producer accuracies of 91.63% (RF80) and 93.48% (RF50) (overall accuracies of 92.10% (RF80) and 92.47% (RF50)), respectively, while CART yielded a user accuracy of only 84.83% and a producer accuracy of 80.86%. The model variable importance in both RF50 and RF80 models showed that vertical transmit and horizontal receive (VH) polarization and harmonic-fitted NDVI were identified as the top five important variables, and the variables representing February, April, June, and December contributed more to the RF model. The detection of VH and NDVI as the top variables which contributed up to 51% of the Random Forest model indicated the importance of the multi-sensor combination for the identification of paddy fields. Numéro de notice : A2020-733 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9110663 Date de publication en ligne : 04/11/2020 En ligne : https://doi.org/10.3390/ijgi9110663 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96346
in ISPRS International journal of geo-information > vol 9 n° 11 (November 2020) . - n° 663[article]