Paru le : 01/02/2021 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierExtracting knowledge from legacy maps to delineate eco-geographical regions / Lin Yang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
[article]
Titre : Extracting knowledge from legacy maps to delineate eco-geographical regions Type de document : Article/Communication Auteurs : Lin Yang, Auteur ; Xinming Li, Auteur ; Qinye Yang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 250 - 272 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] carte ancienne
[Termes IGN] carte climatique
[Termes IGN] cartographie écologique
[Termes IGN] Chine
[Termes IGN] délimitation
[Termes IGN] données cartographiques
[Termes IGN] écorégion
[Termes IGN] extraction de données
[Termes IGN] logique floue
[Termes IGN] sous ensemble flou
[Termes IGN] zone tamponRésumé : (auteur) Legacy ecoregion maps contain knowledge on relationships between eco-region units and their environmental factors. This study proposes a method to extract knowledge from legacy area-class maps to formulate a set of fuzzy membership functions useful for regionalization. We develop a buffer zone approach to reduce the uncertainty of boundaries between eco-region units on area-class maps. We generate buffer zones with a Euclidean distance perpendicular to the boundaries, then the original eco-region units without buffer zones serve as the basic units to generate the probability density functions (PDF) of environmental variables. Then, we transform the PDFs to fuzzy membership functions for class-zones on the map. We demonstrate the proposed method with a climatic zone map of China. The results showed that the buffer zone approach effectively reduced the uncertainties of boundaries. A buffer distance of 10–15 km was recommended in this study. The climatic zone map generated based on the extracted fuzzy membership functions showed a higher spatial stratification heterogeneity (compared to the original map). Based on the fuzzy membership functions with climate data of 1961–2015, we also prepared an updated climatic zone map. This study demonstrates the prospects of using fuzzy membership functions to delineate area classes for regionalization purpose. Numéro de notice : A2021-025 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1806284 Date de publication en ligne : 17/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1806284 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96692
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 250 - 272[article]Land cover harmonization using Latent Dirichlet Allocation / Zhan Li in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
[article]
Titre : Land cover harmonization using Latent Dirichlet Allocation Type de document : Article/Communication Auteurs : Zhan Li, Auteur ; Joanne C. White, Auteur ; Michael A. Wulder, Auteur Année de publication : 2021 Article en page(s) : pp 348 - 374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] allocation de Dirichlet latente
[Termes IGN] Canada
[Termes IGN] carte d'occupation du sol
[Termes IGN] chevauchement
[Termes IGN] erreur de classification
[Termes IGN] harmonisation des données
[Termes IGN] matrice d'erreur
[Termes IGN] matrice de co-occurrence
[Termes IGN] segmentation sémantique
[Termes IGN] utilisation du solRésumé : (auteur) Large-area land cover maps are produced to satisfy different information needs. Land cover maps having partial or complete spatial and/or temporal overlap, different legends, and varying accuracies for similar classes, are increasingly common. To address these concerns and combine two 30-m resolution land cover products, we implemented a harmonization procedure using a Latent Dirichlet Allocation (LDA) model. The LDA model used regionalized class co-occurrences from multiple maps to generate a harmonized class label for each pixel by statistically characterizing land attributes from the class co-occurrences. We evaluated multiple harmonization approaches: using the LDA model alone and in combination with more commonly used information sources for harmonization (i.e. error matrices and semantic affinity scores). The results were compared with the benchmark maps generated using simple legend crosswalks and showed that using LDA outputs with error matrices performed better and increased harmonized map overall accuracy by 6–19% for areas of disagreement between the source maps. Our results revealed the importance of error matrices to harmonization, since excluding error matrices reduced overall accuracy by 4–20%. The LDA-based harmonization approach demonstrated in this paper is quantitative, transparent, portable, and efficient at leveraging the strengths of multiple land cover maps over large areas. Numéro de notice : A2021-027 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1796131 Date de publication en ligne : 27/07/2020 En ligne : https://doi.org/10.1080/13658816.2020.1796131 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96701
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 348 - 374[article]A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping / Zhice Fang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
[article]
Titre : A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping Type de document : Article/Communication Auteurs : Zhice Fang, Auteur ; Yi Wang, Auteur ; Ling Peng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 321 - 347 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] cartographie des risques
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] effondrement de terrain
[Termes IGN] géomorphologie locale
[Termes IGN] pondération
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal récurrent
[Termes IGN] risque naturelRésumé : (auteur) This study introduces four heterogeneous ensemble-learning techniques, that is, stacking, blending, simple averaging, and weighted averaging, to predict landslide susceptibility in Yanshan County, China. These techniques combine several state-of-the-art classifiers of convolutional neural network, recurrent neural network, support vector machine, and logistic regression in specific ways to produce reliable results and avoid problems with the model selection. The study consists of three main steps. The first step establishes a spatial database consisting of 16 landslide conditioning factors and 380 historical landslide locations. The second step randomly selects training (70% of the total) and test (30%) datasets out of grid cells corresponding to landslide and non-slide locations in the study area. The final step constructs the proposed heterogeneous ensemble-learning methods for landslide susceptibility mapping. The proposed ensemble-learning methods show higher prediction accuracy than the individual classifiers mentioned above based on statistical measures. The blending ensemble-learning method achieves the highest overall accuracy of 80.70% compared to the other ensemble-learning methods. Numéro de notice : A2021-028 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1808897 Date de publication en ligne : 15/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1808897 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96704
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 321 - 347[article]Emotional habitat: mapping the global geographic distribution of human emotion with physical environmental factors using a species distribution model / Yizhuo Li in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
[article]
Titre : Emotional habitat: mapping the global geographic distribution of human emotion with physical environmental factors using a species distribution model Type de document : Article/Communication Auteurs : Yizhuo Li, Auteur ; Teng Fei, Auteur ; Yingjing Huang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 227 - 249 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] comportement
[Termes IGN] détection de visage
[Termes IGN] distribution spatiale
[Termes IGN] données environnementales
[Termes IGN] émotion
[Termes IGN] entropie
[Termes IGN] psychologie
[Termes IGN] reconnaissance faciale
[Termes IGN] sciences humaines
[Termes IGN] visionRésumé : (auteur) Human emotion is an intrinsic psychological state that is influenced by human thoughts and behaviours. Human emotion distribution has been regarded as an important part of emotional geography research. However, it is difficult to form a global scaled map reflecting human emotions at the same sampling density because various emotional sampling data are usually positive occurrences without absence data. In this study, a methodological framework for mapping the global geographic distribution of human emotion is proposed and applied, combining a species distribution model with physical environment factors. State-of-the-art affective computing technology is used to extract human emotions from facial expressions in Flickr photos. Various human emotions are considered as different species to form their ‘habitats’ and predict the suitability, termed as ‘Emotional Habitat’. To our knowledge, this framework is the first method to predict emotional distribution from an ecological perspective. Different geographic distributions of seven dimensional emotions are explored and depicted, and emotional diversity and abnormality are detected at the global scale. These results confirm the effectiveness of our framework and offer new insights to understand the relationship between human emotions and the physical environment. Moreover, our method facilitates further rigorous exploration in emotional geography and enriches its content. Numéro de notice : A2021-037 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1755040 Date de publication en ligne : 24/04/2020 En ligne : https://doi.org/10.1080/13658816.2020.1755040 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96746
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 227 - 249[article]An integrated method for DEM simplification with terrain structural features and smooth morphology preserved / Wenhao Yu in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
[article]
Titre : An integrated method for DEM simplification with terrain structural features and smooth morphology preserved Type de document : Article/Communication Auteurs : Wenhao Yu, Auteur ; Yifan Zhang, Auteur ; Tinghua Ai, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 273 - 295 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse structurelle
[Termes IGN] arête
[Termes IGN] carte géomorphologique
[Termes IGN] filtrage statistique
[Termes IGN] ligne caractéristique
[Termes IGN] limite de terrain
[Termes IGN] modèle numérique de surface
[Termes IGN] visualisation multiéchelleRésumé : (auteur) As a key focus of cartography and terrain analysis, the simplification of a digital elevation model (DEM) is used to preserve the pattern features of the terrain surface while suppressing its details over multiple scales. Statistical filtering and structural analysis methods are commonly used for this process. The structural analysis method performs well in identifying terrain structural edges, while it tends to discard the smooth morphology of a terrain surface. In addition, the filter that aims to reduce noise on a surface may over-smooth the terrain structural edges. Therefore, to preserve both the terrain structural edges and smooth morphology, we propose to combine the techniques of statistical filtering and structural analysis. Specifically, all the critical elevation points and structural edges are first detected from the DEM surface by using the structural analysis method. Then, the iterative guided normal filter is used to smooth the generalized DEM with the guidance of the structure of the original surface. After this process, the terrain structure is retained in the smooth surface of the DEM. The experimental results with a real-world dataset show that our method can inherit the merits of both structural analysis and statistical filter in preserving terrain features for multi-scale DEM representations. Numéro de notice : A2021-038 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1772479 Date de publication en ligne : 29/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1772479 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96747
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 273 - 295[article]Uncertainties and errors in algorithms for elevation gradients / Dong Shi in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
[article]
Titre : Uncertainties and errors in algorithms for elevation gradients Type de document : Article/Communication Auteurs : Dong Shi, Auteur ; Qinke Yang, Auteur ; Qifeng Zhu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 296 - 320 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse comparative
[Termes IGN] erreur
[Termes IGN] filtrage du bruit
[Termes IGN] fonction harmonique
[Termes IGN] gradient d'altitude
[Termes IGN] gradient de pente
[Termes IGN] incertitude géométrique
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrainRésumé : (auteur) Elevation gradients are primary components of slope and aspect. Significant concerns remain when computing gradients if noise (perturbing non-DEM data) is present. There is still a need to find ways to balance accuracy of the gradient and stability to noise for specific types of DEM. In this study, six algorithms are compared using four DEMs and analyzed for stability to base level DEM noise and added random noise. Theoretical stability and accuracy of the formulae are analyzed using harmonic (frequency or spatial scale) response. The results provide a basis to determine the most appropriate algorithm for different situations. They show that: (1) the set (Evans-Young (EY), Sharpnack (Sp), Sobel (Sb)) has a better stability to noise ratio than the set (Zevenbergen (Z), Florinsky (F), Horn (H)). EY has the smoothest surface and the highest stability to noise ratio. If stability is the primary measure in mid-frequencies, EY is a good choice. (2) Sb is good because of its accuracy in mid to high frequencies. Out to the highest frequencies, Sb is the best. (3) F has potential but should not be used with very high-frequency noise. (4) H and Z should not be used when there is substantial noise. Numéro de notice : A2021-039 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1766047 Date de publication en ligne : 14/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1766047 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96748
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 296 - 320[article]Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis / Marta Sapena Moll in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
[article]
Titre : Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis Type de document : Article/Communication Auteurs : Marta Sapena Moll, Auteur ; Luis Angel Ruiz, Auteur Année de publication : 2021 Article en page(s) : pp 375 - 396 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse discriminante
[Termes IGN] analyse spatio-temporelle
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte d'utilisation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] croissance urbaine
[Termes IGN] distance euclidienne
[Termes IGN] modèle de croissance végétale
[Termes IGN] pondérationRésumé : (auteur) The spatial pattern of urban growth determines how the physical, socio-economic and environmental characteristics of urban areas change over time. Monitoring urban areas for early identification of spatial patterns facilitates assuring their sustainable growth. In this paper, we assess the use of spatio-temporal metrics from land-use/land-cover (LULC) maps to identify growth patterns. We applied LULC change models to simulate different scenarios of urban growth spatial patterns (i.e., expansion, compact, dispersed, road-based and leapfrog) on various baseline urban forms (i.e., monocentric, polycentric, sprawl and linear). Then, we computed the spatio-temporal metrics for the simulated scenarios, selected the most informative metrics by applying discriminant analysis and classified the growth patterns using clustering methods. Two metrics, Weighted mean expansion and Weighted Euclidean distance, which account for the densification, compactness and concentration of urban growth, were the most efficient for classifying the five growth patterns, despite the influence of the baseline urban form. These metrics have the potential to identify growth patterns for monitoring and evaluating the management of developing urban areas. Numéro de notice : A2021-040 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1817463 Date de publication en ligne : 08/09/2020 En ligne : https://doi.org/10.1080/13658816.2020.1817463 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96752
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 375 - 396[article]A spatiotemporal structural graph for characterizing land cover changes / Bin Wu in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
[article]
Titre : A spatiotemporal structural graph for characterizing land cover changes Type de document : Article/Communication Auteurs : Bin Wu, Auteur ; Ballang Yu, Auteur ; Song Shu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 397 - 425 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] changement d'occupation du sol
[Termes IGN] changement temporel
[Termes IGN] graphe
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] objet géographique
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) Characterizing landscape patterns and revealing their underlying processes are critical for studying climate change and environmental problems. Previous methods for mapping land cover changes largely focused on the classification of remote sensing images. Therefore, they could not provide information about the evolutionary process of land cover changes. In this paper, we developed a spatiotemporal structural graph (STSG) technique for a comprehensive analysis of land cover changes. First, a land cover neighborhood graph was generated for each snapshot to quantify the spatial relationship between adjacent land cover objects. Then, an object-based temporal tracking algorithm was designed to monitor the temporal changes between land cover objects over time. Finally, land cover evolutionary trajectories, pixel-level land cover change trajectories, and node-wise connectivity changes over time were characterized. We applied the proposed method to analyze land cover changes in Suffolk County, New York from 1996 to 2010. The results demonstrated that STSG can not only characterize and visualize detailed land cover changes spatially but also maintain the temporal sequence and relations of land cover objects in an integrated space-time environment. The proposed STSG provides a useful framework for analyzing land cover changes and can be adapted to characterize and quantify other spatiotemporal phenomena. Numéro de notice : A2021-041 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1778706 Date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1080/13658816.2020.1778706 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96753
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 397 - 425[article]