|
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -) ![]()
[n° ou bulletin]
|
Dépouillements


Super-resolution of VIIRS-measured ocean color products using deep convolutional neural network / Xiaoming Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Super-resolution of VIIRS-measured ocean color products using deep convolutional neural network Type de document : Article/Communication Auteurs : Xiaoming Liu, Auteur ; Menghua Wang, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 127 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spectrale
[Termes IGN] apprentissage profond
[Termes IGN] bande infrarouge
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couleur de l'océan
[Termes IGN] image infrarouge couleur
[Termes IGN] image multibande
[Termes IGN] image NPP-VIIRS
[Termes IGN] rayonnementRésumé : (auteur) Since its launch in October 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite has provided high quality global ocean color products, which include normalized water-leaving radiance spectra nLw ( λ ) of six moderate (M) bands (M1–M6) at the wavelengths of 410, 443, 486, 551, 671, and 745 nm with a spatial resolution of 750-m, and one imagery (I) band at a wavelength of 638 nm with a spatial resolution of 375-m. Because the high-resolution I-band measurements are highly correlated spectrally to those of M-band data, it can be used as a guidance to super-resolve the M-band nLw ( λ ) imagery from 750- to 375-m spatial resolution. Super-resolving images from coarse spatial resolution to finer ones have been a field of very active research in recent years. However, no previous studies have been applied to satellite ocean color remote sensing, in particular, for VIIRS ocean color applications. In this study, we employ the deep convolutional neural network (CNN) technique to glean the high-frequency content from the VIIRS I1 band and transfer to super-resolved M-band ocean color images. The network is trained to super-resolve each of the VIIRS six M-bands nLw ( λ ) separately. In our results, the super-resolved (375-m) nLw ( λ ) images are much sharper and show finer spatial structures than the original images. Quantitative evaluations show that biases between the super-resolved and original nLw ( λ ) images are small for all bands. However, errors in the super-resolved nLw ( λ ) images are wavelength-dependent. The smallest error is found in the super-resolved nLw (551) and nLw (671) images, and error increases as the wavelength decreases from 486 to 410 nm. The results show that the networks have the capability to capture the correlations of the M-band and the I1 band images to super-resolved M-band images. Numéro de notice : A2021-031 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992912 Date de publication en ligne : 20/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992912 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96726
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 114 - 127[article]Impact of forest disturbance on InSAR surface displacement time series / Paula M. Bürgi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Impact of forest disturbance on InSAR surface displacement time series Type de document : Article/Communication Auteurs : Paula M. Bürgi, Auteur ; Rowena B. Lohman, Auteur Année de publication : 2021 Article en page(s) : pp 128 - 138 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] changement d'occupation du sol
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] détection du signal
[Termes IGN] erreur de phase
[Termes IGN] erreur systématique
[Termes IGN] image ALOS
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] retard ionosphèrique
[Termes IGN] retard troposphérique
[Termes IGN] série temporelle
[Termes IGN] Sumatra
[Termes IGN] surveillance géologiqueRésumé : (auteur) As interferometric synthetic aperture radar (InSAR) data improve in their global coverage and temporal sampling, studies of ground deformation using InSAR are becoming feasible even in heavily vegetated regions such as the American Pacific Northwest (PNW) and Sumatra. However, ongoing forest disturbance due to logging, wildfires, or disease can introduce time-variable signals which could be misinterpreted as ground displacements. This study constrains the error introduced into InSAR time series in the presence of time-variable forest disturbance using synthetic data. For satellite platforms with randomly distributed orbital positions in time (e.g., Sentinel-1), mid-time series forest disturbance results in random error on the order of 0.2 and 10 cm/year for 1-year secular and time-variable velocities, respectively. If the orbital positions are not randomly distributed in time (e.g., ALOS-1), a biased error on the order of 10 cm/year is introduced to the inferred secular velocity. A time series using real ALOS-1 data near Eugene, OR, USA, shows agreement with the bias estimated by synthetic models. Mitigation of time-variable land cover change effects can be achieved if their timing is known, either through independent observations of surface properties (e.g., Landsat/Sentinel-2) or through the use of more computationally expensive, nonlinear inversions with additional terms for the timing of height changes. Inclusion of these additional terms reduces the potential for misinterpretation of InSAR signals associated with land surface change as ground deformation. Numéro de notice : A2021-032 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992938 Date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992938 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96727
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 128 - 138[article]Evaluation of a neural network with uncertainty for detection of ice and water in SAR imagery / Nazanin Asadi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Evaluation of a neural network with uncertainty for detection of ice and water in SAR imagery Type de document : Article/Communication Auteurs : Nazanin Asadi, Auteur ; K. Andrea Scott, Auteur ; Alexander S. Komarov, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 247 - 259 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] assimilation des données
[Termes IGN] classification pixellaire
[Termes IGN] glace de mer
[Termes IGN] image radar moirée
[Termes IGN] incertitude des données
[Termes IGN] modèle d'incertitude
[Termes IGN] Perceptron multicouche
[Termes IGN] pondération
[Termes IGN] précision de la classification
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificielRésumé : (auteur) Synthetic aperture radar (SAR) sea ice imagery is a promising source of data for sea ice data assimilation. Classification of SAR sea ice imagery into ice and water is of particular relevance due to its relationship with ice concentration, a key variable in sea ice data assimilation systems. With increasing volumes of SAR data, automated methods to carry out these classifications are of particular importance. Although several automated approaches have been proposed, none look at the impact of including an estimate of uncertainty of the model parameters and input features on the classification output. This article uses an established database of SAR image features to train a multilayer perceptron (MLP) neural network to classify pixel locations as either ice, water, or unknown. The classification accuracies are benchmarked using a recently developed logistic regression approach for the same database. The two methods are found to be comparable. The MLP approach is then enhanced to allow uncertainty to be estimated at each pixel location. Following methods proposed in the deep learning community, two kinds of uncertainty are considered. The first, epistemic uncertainty, is that due to uncertainty in the MLP weights. The second kind of uncertainty, aleatoric uncertainty, is that which cannot be explained by the model, and is therefore associated with the input data. It is found that including these uncertainties in the MLP models reduces their accuracies slightly, but also reduces misclassification rates. This is of particular importance for data assimilation applications, where misclassifications could severely degrade the analysis. Numéro de notice : A2021-033 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992454 Date de publication en ligne : 09/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992454 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96735
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 247 - 259[article]Holographic SAR tomography 3-D reconstruction based on iterative adaptive approach and generalized likelihood ratio test / Dong Feng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Holographic SAR tomography 3-D reconstruction based on iterative adaptive approach and generalized likelihood ratio test Type de document : Article/Communication Auteurs : Dong Feng, Auteur ; Daoxiang An, Auteur ; Leping Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 305 - 315 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] angle azimutal
[Termes IGN] holographie
[Termes IGN] image radar moirée
[Termes IGN] itération
[Termes IGN] ligne de visée
[Termes IGN] reconstruction 3D
[Termes IGN] scène 3D
[Termes IGN] tomographie radarRésumé : (auteur) Holographic synthetic aperture radar (HoloSAR) tomography is an attractive imaging mode that can retrieve the 3-D scattering information of the observed scene over 360° azimuth angle variation. To improve the resolution and reduce the sidelobes in elevation, the HoloSAR imaging mode requires many passes in elevation, thus decreasing its feasibility. In this article, an imaging method based on iterative adaptive approach (IAA) and generalized likelihood ratio test (GLRT) is proposed for the HoloSAR with limited elevation passes to achieve super-resolution reconstruction in elevation. For the elevation reconstruction in each range-azimuth cell, the proposed method first adopts the nonparametric IAA to retrieve the elevation profile with improved resolution and suppressed sidelobes. Then, to obtain sparse elevation estimates, the GLRT is used as a model order selection tool to automatically recognize the most likely number of scatterers and obtain the reflectivities of the detected scatterers inside one range-azimuth cell. The proposed method is a super-resolving method. It does not require averaging in range and azimuth, thus it can maintain the range-azimuth resolution. In addition, the proposed method is a user parameter-free method, so it does not need the fine-tuning of any hyperparameters. The super-resolution power and the estimation accuracy of the proposed method are evaluated using the simulated data, and the validity and feasibility of the proposed method are verified by the HoloSAR real data processing results. Numéro de notice : A2021-034 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2994201 Date de publication en ligne : 22/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2994201 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96736
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 305 - 315[article]LANet: Local attention embedding to improve the semantic segmentation of remote sensing images / Lei Ding in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : LANet: Local attention embedding to improve the semantic segmentation of remote sensing images Type de document : Article/Communication Auteurs : Lei Ding, Auteur ; Hao Tang, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2021 Article en page(s) : pp 426 - 435 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de données
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] décodage
[Termes IGN] distribution spatiale
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] segmentation sémantiqueRésumé : (auteur) The trade-off between feature representation power and spatial localization accuracy is crucial for the dense classification/semantic segmentation of remote sensing images (RSIs). High-level features extracted from the late layers of a neural network are rich in semantic information, yet have blurred spatial details; low-level features extracted from the early layers of a network contain more pixel-level information but are isolated and noisy. It is therefore difficult to bridge the gap between high- and low-level features due to their difference in terms of physical information content and spatial distribution. In this article, we contribute to solve this problem by enhancing the feature representation in two ways. On the one hand, a patch attention module (PAM) is proposed to enhance the embedding of context information based on a patchwise calculation of local attention. On the other hand, an attention embedding module (AEM) is proposed to enrich the semantic information of low-level features by embedding local focus from high-level features. Both proposed modules are lightweight and can be applied to process the extracted features of convolutional neural networks (CNNs). Experiments show that, by integrating the proposed modules into a baseline fully convolutional network (FCN), the resulting local attention network (LANet) greatly improves the performance over the baseline and outperforms other attention-based methods on two RSI data sets. Numéro de notice : A2021-035 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2994150 Date de publication en ligne : 27/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2994150 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96737
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 426 - 435[article]Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition / Yuanyang Bu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Hyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition Type de document : Article/Communication Auteurs : Yuanyang Bu, Auteur ; Yong-Qiang Zhao, Auteur ; Jize Xue, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 648 - 662 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spectrale
[Termes IGN] calcul tensoriel
[Termes IGN] équation de Laplace
[Termes IGN] fusion d'images
[Termes IGN] graphe
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] optimisation (mathématiques)
[Termes IGN] tenseur
[Termes IGN] théorie des variétésRésumé : (auteur) We propose a novel graph Laplacian-guided coupled tensor decomposition (gLGCTD) model for fusion of hyperspectral image (HSI) and multispectral image (MSI) for spatial and spectral resolution enhancements. The coupled Tucker decomposition is employed to capture the global interdependencies across the different modes to fully exploit the intrinsic global spatial–spectral information. To preserve local characteristics, the complementary submanifold structures embedded in high-resolution (HR)-HSI are encoded by the graph Laplacian regularizations. The global spatial–spectral information captured by the coupled Tucker decomposition and the local submanifold structures are incorporated into a unified framework. The gLGCTD fusion framework is solved by a hybrid framework between the proximal alternating optimization (PAO) and the alternating direction method of multipliers (ADMM). Experimental results on both synthetic and real data sets demonstrate that the gLGCTD fusion method is superior to state-of-the-art fusion methods with a more accurate reconstruction of the HR-HSI. Numéro de notice : A2021-036 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992788 Date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992788 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96738
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 648 - 662[article]Extraction of street pole-like objects based on plane filtering from mobile LiDAR data / Jingming Tu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Extraction of street pole-like objects based on plane filtering from mobile LiDAR data Type de document : Article/Communication Auteurs : Jingming Tu, Auteur ; Jian Yao, Auteur ; Li Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 749 - 768 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte routière
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forme caractéristique
[Termes IGN] méthode robuste
[Termes IGN] octree
[Termes IGN] réseau routierRésumé : (auteur) Pole-like objects provide important street infrastructure for road inventory and road mapping. In this article, we proposed a novel pole-like object extraction algorithm based on plane filtering from mobile Light Detection and Ranging (LiDAR) data. The proposed approach is composed of two parts. In the first part, a novel octree-based split scheme was proposed to fit initial planes from off-ground points. The results of the plane fitting contribute to the extraction of pole-like objects. In the second part, we proposed a novel method of pole-like object extraction by plane filtering based on local geometric feature restriction and isolation detection. The proposed approach is a new solution for detecting pole-like objects from mobile LiDAR data. The innovation in this article is that we assumed that each of the pole-like objects can be represented by a plane. Thus, the essence of extracting pole-like objects will be converted to plane selecting problem. The proposed method has been tested on three data sets captured from different scenes. The average completeness, correctness, and quality of our approach can reach up to 87.66%, 88.81%, and 79.03%, which is superior to state-of-the-art approaches. The experimental results indicate that our approach can extract pole-like objects robustly and efficiently. Numéro de notice : A2021-042 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2993454 Date de publication en ligne : 20/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2993454 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96758
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 749 - 768[article]