|
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -) ![]()
[n° ou bulletin]
| ![]() |
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2021031 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
081-2021033 | DEP-RECP | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2021032 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements


Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon / Tamer ElGharbawi in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
![]()
[article]
Titre : Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon Type de document : Article/Communication Auteurs : Tamer ElGharbawi, Auteur ; Fawzi Zarzoura, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Beyrouth
[Termes IGN] corrélation
[Termes IGN] décorrélation
[Termes IGN] dommage matériel
[Termes IGN] étude d'impact
[Termes IGN] filtre passe-haut
[Termes IGN] image radar moirée
[Termes IGN] risque technologiqueRésumé : (auteur) Early well-coordinated response during unexpected catastrophes can define the near future of the stricken regions. Beirut city, Lebanon, was one of the unfortunate regions to endure the horrific ordeal of an unexpected explosion that caused thousands of human casualties, billions of dollars’ worth of property damage, and destroyed its main maritime entry point. In this paper, we identify damaged regions and classify their severity using a simple and robust SAR correlation technique. We employ phase coherence and amplitude correlation of a SAR stack to estimate pixels’ damage probability using hypothesis testing. We use a spatial phase filter applied in the frequency domain to improve the estimated coherence by removing the spatial decorrelation component of the total estimated coherence. Using this filter improved the coherence of nearly 44.2% of pixels identified with coherence less than 0.25 in our study area. The estimated damaged regions are presented and compared against a damage map issued by Advanced Rapid Imaging and Analysis (ARIA) which shows an average agreement of 68.3%. Also, a fine agreement was observed when compared to optical satellite images. Numéro de notice : A2021-100 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.00 Date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96871
in ISPRS Journal of photogrammetry and remote sensing > vol 173 (March 2021) . - pp 1 - 9[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021031 SL Revue Centre de documentation Revues en salle Disponible 081-2021033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Characterizing urban land changes of 30 global megacities using nighttime light time series stacks / Qiming Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
![]()
[article]
Titre : Characterizing urban land changes of 30 global megacities using nighttime light time series stacks Type de document : Article/Communication Auteurs : Qiming Zheng, Auteur ; Qihao Weng, Auteur ; Ke Wang, Auteur Année de publication : 2021 Article en page(s) : pp 10 - 23 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse harmonique
[Termes IGN] cartographie urbaine
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] éclairage public
[Termes IGN] image infrarouge
[Termes IGN] image NPP-VIIRS
[Termes IGN] mégalopole
[Termes IGN] série temporelle
[Termes IGN] zone urbaineRésumé : (auteur) Worldwide urbanization has brought about diverse types of urban land use and land cover (LULC) changes. The diversity of urban land changes, however, have been greatly under studied, since the major focus of past research has been on urban growth. In this study, we proposed a framework to characterize diverse urban land changes of 30 global megacities using monthly nighttime light time series from VIIRS data. First, we developed a Logistic-Harmonic model to fit VIIRS time series. Second, by leveraging the uniqueness of urban land change and nighttime light data, we incorporated temporal information of VIIRS time series and proposed a new classification scheme to produce monthly maps of built-up areas and to disentangle urban land changes into five categories. Third, we provided an in-depth analysis and comparison of urban land change patterns of the selected megacities. Results demonstrated that the Logistic-Harmonic model yielded a robust performance in fitting VIIRS time series. Temporal features based classification can not only significantly improve the mapping accuracy of built-up areas, especially for regions with heterogeneous built-up and non-built-up landscapes, but also promoted temporal consistency and classification efficiency. Urban land changes occurred in 51% of the built-up pixels of the megacities. Compared with urban growth, other types of urban land change, particularly land use intensification, contributed to an unexpectedly large proportion of the changes (83%). The findings of this study offer an insightful understanding on global urbanization processes in megacities, and evoke further investigation on the environmental and ecological implications of urban land changes. Numéro de notice : A2021-101 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.002 Date de publication en ligne : 16/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.002 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96873
in ISPRS Journal of photogrammetry and remote sensing > vol 173 (March 2021) . - pp 10 - 23[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021031 SL Revue Centre de documentation Revues en salle Disponible 081-2021033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Enhanced trajectory estimation of mobile laser scanners using aerial images / Zille Hussnain in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
![]()
[article]
Titre : Enhanced trajectory estimation of mobile laser scanners using aerial images Type de document : Article/Communication Auteurs : Zille Hussnain, Auteur ; Sander J. Oude Elberink, Auteur ; M. George Vosselman, Auteur Année de publication : 2021 Article en page(s) : pp 66 - 78 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de points
[Termes IGN] atténuation du signal
[Termes IGN] balayage laser
[Termes IGN] canyon urbain
[Termes IGN] centrale inertielle
[Termes IGN] données lidar
[Termes IGN] erreur
[Termes IGN] image captée par drone
[Termes IGN] mesurage par GNSS
[Termes IGN] semis de points
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] trajet multipleRésumé : (auteur) Multipath effects and signal obstruction by buildings in urban canyons can lead to inaccurate GNSS measurements and therefore errors in the estimated trajectory of Mobile Laser Scanning (MLS) systems; consequently, derived point clouds are distorted and lose spatial consistency. We obtain decimetre-level trajectory accuracy making use of corresponding points between the MLS data and aerial images with accurate exterior orientations instead of using ground control points. The MLS trajectory is estimated based on observation equations resulting from these corresponding points, the original IMU observations, and soft constraints on the pitch and yaw rotations of the vehicle. We analyse the quality of the trajectory enhancement under several conditions where the experiments were designed to test the influence of the number and quality of corresponding points and to test different settings for a B-spline representation of the vehicle trajectory. The method was tested on two independently acquired MLS datasets in Rotterdam by enhancing the trajectories and evaluating them using checkpoints. The RMSE values of the original GNSS/IMU based Kalman filter results at the checkpoints were 0.26 m, 0.30 m, and 0.47 m for the X-, Y- and Z-coordinates in the first dataset and 1.10 m, 1.51 m, and 1.81 m in the second dataset. The latter dataset was recorded with a lower quality IMU in an area with taller buildings. After trajectory adjustment these RMSE values were reduced to 0.09 m, 0.11 m, and 0.16 m for the first dataset and 0.12 m, 0.14 m, and 0.18 m for the second dataset. The results confirmed that, if sufficient tie points between the point cloud and aerial imagery are available, the method supports geo-referencing of MLS point clouds in urban canyons with a near-decimetre accuracy. Numéro de notice : A2021-102 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.005 Date de publication en ligne : 17/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.005 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96877
in ISPRS Journal of photogrammetry and remote sensing > vol 173 (March 2021) . - pp 66 - 78[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021031 SL Revue Centre de documentation Revues en salle Disponible 081-2021033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Robust unsupervised small area change detection from SAR imagery using deep learning / Xinzheng Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
![]()
[article]
Titre : Robust unsupervised small area change detection from SAR imagery using deep learning Type de document : Article/Communication Auteurs : Xinzheng Zhang, Auteur ; Hang Su, Auteur ; Ce Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] échantillonnage
[Termes IGN] filtre de déchatoiement
[Termes IGN] image radar moirée
[Termes IGN] ondelette
[Termes IGN] regroupement de données
[Termes IGN] superpixelRésumé : (auteur) Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection. Numéro de notice : A2021-103 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.004 Date de publication en ligne : 17/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96879
in ISPRS Journal of photogrammetry and remote sensing > vol 173 (March 2021) . - pp 79 - 94[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021031 SL Revue Centre de documentation Revues en salle Disponible 081-2021033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery / Xian Sun in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
![]()
[article]
Titre : PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery Type de document : Article/Communication Auteurs : Xian Sun, Auteur ; Peijin Wang, Auteur ; Cheng Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 50 - 65 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] objet géographique complexe
[Termes IGN] prise en compte du contexte
[Termes IGN] rectangle englobant minimumRésumé : (auteur) In recent years, deep learning-based algorithms have brought great improvements to rigid object detection. In addition to rigid objects, remote sensing images also contain many complex composite objects, such as sewage treatment plants, golf courses, and airports, which have neither a fixed shape nor a fixed size. In this paper, we validate through experiments that the results of existing methods in detecting composite objects are not satisfying enough. Therefore, we propose a unified part-based convolutional neural network (PBNet), which is specifically designed for composite object detection in remote sensing imagery. PBNet treats a composite object as a group of parts and incorporates part information into context information to improve composite object detection. Correct part information can guide the prediction of a composite object, thus solving the problems caused by various shapes and sizes. To generate accurate part information, we design a part localization module to learn the classification and localization of part points using bounding box annotation only. A context refinement module is designed to generate more discriminative features by aggregating local context information and global context information, which enhances the learning of part information and improve the ability of feature representation. We selected three typical categories of composite objects from a public dataset to conduct experiments to verify the detection performance and generalization ability of our method. Meanwhile, we build a more challenging dataset about a typical kind of complex composite objects, i.e., sewage treatment plants. It refers to the relevant information from authorities and experts. This dataset contains sewage treatment plants in seven cities in the Yangtze valley, covering a wide range of regions. Comprehensive experiments on two datasets show that PBNet surpasses the existing detection algorithms and achieves state-of-the-art accuracy. Numéro de notice : A2021-105 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.015 Date de publication en ligne : 16/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.015 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96891
in ISPRS Journal of photogrammetry and remote sensing > vol 173 (March 2021) . - pp 50 - 65[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021031 SL Revue Centre de documentation Revues en salle Disponible 081-2021033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt