|
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Comparison of spatially and nonspatially explicit nonlinear mixed effects models for Norway spruce individual tree growth under single-tree selection / Simone Bianchi in Forests, vol 11 n° 12 (December 2020)
![]()
[article]
Titre : Comparison of spatially and nonspatially explicit nonlinear mixed effects models for Norway spruce individual tree growth under single-tree selection Type de document : Article/Communication Auteurs : Simone Bianchi, Auteur ; Mari Myllymäki, Auteur ; Jouni Siipilehto, Auteur ; Hannu Salminen, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 1338 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] arbre (flore)
[Termes IGN] croissance des arbres
[Termes IGN] forêt boréale
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle non linéaire
[Termes IGN] Picea abies
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Background and Objectives: Continuous cover forestry is of increasing importance, but operational forest growth models are still lacking. The debate is especially open if more complex spatial approaches would provide a worthwhile increase in accuracy. Our objective was to compare a nonspatial versus a spatial approach for individual Norway spruce tree growth models under single-tree selection cutting.
Materials and Methods: We calibrated nonlinear mixed models using data from a long-term experiment in Finland (20 stands with 3538 individual trees for 10,238 growth measurements). We compared the use of nonspatial versus spatial predictors to describe the competitive pressure and its release after cutting. The models were compared in terms of Akaike Information Criteria (AIC), root mean square error (RMSE), and mean absolute bias (MAB), both with the training data and after cross-validation with a leave-one-out method at stand level.
Results: Even though the spatial model had a lower AIC than the nonspatial model, RMSE and MAB of the two models were similar. Both models tended to underpredict growth for the highest observed values when the tree-level random effects were not used. After cross-validation, the aggregated predictions at stand level well represented the observations in both models. For most of the predictors, the use of values based on trees’ height rather than trees’ diameter improved the fit. After single-tree selection cutting, trees had a growth boost both in the first and second five-year period after cutting, however, with different predicted intensity in the two models.
Conclusions: Under the research framework here considered, the spatial modeling approach was not more accurate than the nonspatial one. Regarding the single-tree selection cutting, an intervention regime spaced no more than 15 years apart seems necessary to sustain the individual tree growth. However, the model’s fixed effect parts were not able to capture the high growth of the few fastest-growing trees, and a proper estimation of site potential is needed for uneven-aged stands.Numéro de notice : A2020-578 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.3390/f11121338 Date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.3390/f11121338 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97034
in Forests > vol 11 n° 12 (December 2020) . - n° 1338[article]Use of remote sensing data to improve the efficiency of National Forest Inventories: A case study from the United States National Forest Inventory / Andrew J. Lister in Forests, vol 11 n° 12 (December 2020)
![]()
[article]
Titre : Use of remote sensing data to improve the efficiency of National Forest Inventories: A case study from the United States National Forest Inventory Type de document : Article/Communication Auteurs : Andrew J. Lister, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 1364 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] échantillonnage
[Termes IGN] Etats-Unis
[Termes IGN] image aérienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] surveillance forestière
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Globally, forests are a crucial natural resource, and their sound management is critical for human and ecosystem health and well-being. Efforts to manage forests depend upon reliable data on the status of and trends in forest resources. When these data come from well-designed natural resource monitoring (NRM) systems, decision makers can make science-informed decisions. National forest inventories (NFIs) are a cornerstone of NRM systems, but require capacity and skills to implement. Efficiencies can be gained by incorporating auxiliary information derived from remote sensing (RS) into ground-based forest inventories. However, it can be difficult for countries embarking on NFI development to choose among the various RS integration options, and to develop a harmonized vision of how NFI and RS data can work together to meet monitoring needs. The NFI of the United States, which has been conducted by the USDA Forest Service’s (USFS) Forest Inventory and Analysis (FIA) program for nearly a century, uses RS technology extensively. Here we review the history of the use of RS in FIA, beginning with general background on NFI, FIA, and sampling statistics, followed by a description of the evolution of RS technology usage, beginning with paper aerial photography and ending with present day applications and future directions. The goal of this review is to offer FIA’s experience with NFI-RS integration as a case study for other countries wishing to improve the efficiency of their NFI programs. Numéro de notice : A2020-844 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f11121364 Date de publication en ligne : 19/12/2020 En ligne : https://doi.org/10.3390/f11121364 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98632
in Forests > vol 11 n° 12 (December 2020) . - n° 1364[article]Forest cover mapping based on a combination of aerial images and Sentinel-2 satellite data compared to National Forest Inventory data / Selina Ganz in Forests, vol 11 n° 12 (December 2020)
![]()
[article]
Titre : Forest cover mapping based on a combination of aerial images and Sentinel-2 satellite data compared to National Forest Inventory data Type de document : Article/Communication Auteurs : Selina Ganz, Auteur ; Petra Adler, Auteur ; Gerald Kändler, Auteur Année de publication : 2020 Article en page(s) : n° 1322 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] Bade-Wurtemberg (Allemagne)
[Termes IGN] carte forestière
[Termes IGN] image aérienne
[Termes IGN] image Sentinel-MSI
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle numérique de surface
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Research Highlights: This study developed the first remote sensing-based forest cover map of Baden-Württemberg, Germany, in a very high level of detail.
Background and Objectives: As available global or pan-European forest maps have a low level of detail and the forest definition is not considered, administrative data are often oversimplified or out of date. Consequently, there is an important need for spatio-temporally explicit forest maps. The main objective of the present study was to generate a forest cover map of Baden-Württemberg, taking the German forest definition into account. Furthermore, we compared the results to NFI data; incongruences were categorized and quantified. Materials and
Methods: We used a multisensory approach involving both aerial images and Sentinel-2 data. The applied methods are almost completely automated and therefore suitable for area-wide forest mapping.
Results: According to our results, approximately 37.12% of the state is covered by forest, which agrees very well with the results of the NFI report (37.26% ± 0.44%). We showed that the forest cover map could be derived by aerial images and Sentinel-2 data including various data acquisition conditions and settings. Comparisons between the forest cover map and 34,429 NFI plots resulted in a spatial agreement of 95.21% overall. We identified four reasons for incongruences: (a) edge effects at forest borders (2.08%), (b) different forest definitions since NFI does not specify minimum tree height (2.04%), (c) land cover does not match land use (0.66%) and (d) errors in the forest cover layer (0.01%).
Conclusions: The introduced approach is a valuable technique for mapping forest cover in a high level of detail. The developed forest cover map is frequently updated and thus can be used for monitoring purposes and for assisting a wide range of forest science, biodiversity or climate change-related studies.Numéro de notice : A2020-845 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f11121322 Date de publication en ligne : 12/12/2020 En ligne : https://doi.org/10.3390/f11121322 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98633
in Forests > vol 11 n° 12 (December 2020) . - n° 1322[article]