[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery / Sikdar M. M. Rasel in Geocarto international, vol 36 n° 10 ([01/06/2021])
![]()
[article]
Titre : Application of feature selection methods and machine learning algorithms for saltmarsh biomass estimation using Worldview-2 imagery Type de document : Article/Communication Auteurs : Sikdar M. M. Rasel, Auteur ; Hsing-Chung Chang, Auteur ; Timothy J. Ralph, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1075-1099 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] bande spectrale
[Termes IGN] biomasse
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image multibande
[Termes IGN] image Worldview
[Termes IGN] marais salé
[Termes IGN] modèle de simulation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression
[Termes IGN] variableRésumé : (Auteur) Assessing large scale plant productivity of coastal marshes is essential to understand the resilience of these systems to climate change. Two machine learning approaches, random forest (RF) and support vector machine (SVM) regression were tested to estimate biomass of a common saltmarshes species, salt couch grass (Sporobolus virginicus). Reflectance and vegetation indices derived from 8 bands of Worldview-2 multispectral data were used for four experiments to develop the biomass model. These four experiments were, Experiment-1: 8 bands of Worldview-2 image, Experiment-2: Possible combination of all bands of Worldview-2 for Normalized Difference Vegetation Index (NDVI) type vegetation indices, Experiment-3: Combination of bands and vegetation indices, Experiment-4: Selected variables derived from experiment-3 using variable selection methods. The main objectives of this study are (i) to recommend an affordable low cost data source to predict biomass of a common saltmarshes species, (ii) to suggest a variable selection method suitable for multispectral data, (iii) to assess the performance of RF and SVM for the biomass prediction model. Cross-validation of parameter optimizations for SVM showed that optimized parameter of ɛ-SVR failed to provide a reliable prediction. Hence, ν-SVR was used for the SVM model. Among the different variable selection methods, recursive feature elimination (RFE) selected a minimum number of variables (only 4) with an RMSE of 0.211 (kg/m2). Experiment-4 (only selected bands) provided the best results for both of the machine learning regression methods, RF (R2= 0.72, RMSE= 0.166 kg/m2) and SVR (R2= 0.66, RMSE = 0.200 kg/m2) to predict biomass. When a 10-fold cross validation of the RF model was compared with a 10-fold cross validation of SVR, a significant difference (p = Numéro de notice : A2021-367 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1624988 Date de publication en ligne : 11/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1624988 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97729
in Geocarto international > vol 36 n° 10 [01/06/2021] . - pp 1075-1099[article]On the relationship between normalized difference vegetation index and land surface temperature: MODIS-based analysis in a semi-arid to arid environment / Salahuddin M. Jaber in Geocarto international, vol 36 n° 10 ([01/06/2021])
![]()
[article]
Titre : On the relationship between normalized difference vegetation index and land surface temperature: MODIS-based analysis in a semi-arid to arid environment Type de document : Article/Communication Auteurs : Salahuddin M. Jaber, Auteur Année de publication : 2021 Article en page(s) : pp 1117-1135 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] coefficient de corrélation
[Termes IGN] image Terra-MODIS
[Termes IGN] Jordanie
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] nuit
[Termes IGN] régression
[Termes IGN] température au sol
[Termes IGN] variation diurne
[Termes IGN] variation saisonnière
[Termes IGN] zone aride
[Termes IGN] zone semi-arideRésumé : (Auteur) This work focused on studying the relationships between Normalized Difference Vegetation Index (NDVI) and daytime and nighttime Land Surface Temperature (LST) in winter, spring, summer and fall and investigating the effects of land cover on these variables in Jordan, which represents a typical semi-arid to arid environment. Using MODIS-based data for the year 2017, multiple procedures were applied: one-way analysis of variance followed by comparison between means, Pearson correlation coefficient, global Moran’s index, simple linear regression, second-order polynomial regression, recursive-partitioning regression and geographically weighted regression. The results showed that land cover explained fair amount of the variability in NDVI but small amount of the variability in daytime and nighttime LST. In addition, an inverted surface urban heat island pattern was observed in daytime. Finally, applying different regression procedures produced different perspectives about the complex and variable relationships between daytime and nighttime LST and NDVI in different seasons. Numéro de notice : A2021-368 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1633421 Date de publication en ligne : 25/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1633421 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97731
in Geocarto international > vol 36 n° 10 [01/06/2021] . - pp 1117-1135[article]A combined drought monitoring index based on multi-sensor remote sensing data and machine learning / Hongzhu Han in Geocarto international, vol 36 n° 10 ([01/06/2021])
![]()
[article]
Titre : A combined drought monitoring index based on multi-sensor remote sensing data and machine learning Type de document : Article/Communication Auteurs : Hongzhu Han, Auteur ; Jianjun Bai, Auteur ; Jianwu Yan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1161-1177 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] Chensi (Chine)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] évapotranspiration
[Termes IGN] humidité du sol
[Termes IGN] image Terra-MODIS
[Termes IGN] image TRMM-MI
[Termes IGN] indice d'humidité
[Termes IGN] indice de végétation
[Termes IGN] précipitation
[Termes IGN] sécheresse
[Termes IGN] surveillance météorologique
[Termes IGN] température au solRésumé : (Auteur) The occurrence of drought is related to complicated interactions between many factors, such as precipitation, temperature, evapotranspiration and vegetation. In this study, the relationships between drought and precipitation, temperature, vegetation and evapotranspiration were investigated with a random forest (RF), and a new combined drought monitoring index (CDMI) was constructed. The effectiveness of the CDMI in monitoring drought in Shaanxi Province was verified by the in situ 1 ∼ 12-month standardized precipitation index (SPI); relative soil moisture (RSM) and four other commonly used remote sensing drought monitoring indices. The results show that CDMI is more correlated with the SPI and RSM than the four indices. Moreover, the spatial distributions of drought for the CDMI and RSM are similar. Therefore, the CDMI can be used to monitor droughts in Shaanxi Province, and machine learning can explore the relationships between various factors and establish a drought index without knowledge of the causal mechanisms of these factors. Numéro de notice : A2021-369 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1633423 Date de publication en ligne : 27/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1633423 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97734
in Geocarto international > vol 36 n° 10 [01/06/2021] . - pp 1161-1177[article]