|
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -) ![]()
[n° ou bulletin]
|
Dépouillements


Mapping sandy land using the new sand differential emissivity index from thermal infrared emissivity data / Shanshan Chen in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
![]()
[article]
Titre : Mapping sandy land using the new sand differential emissivity index from thermal infrared emissivity data Type de document : Article/Communication Auteurs : Shanshan Chen, Auteur ; Huazhong Ren, Auteur ; Rongyuan Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5464 - 5478 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] désertification
[Termes IGN] détection de changement
[Termes IGN] distribution spatiale
[Termes IGN] ensablement
[Termes IGN] image TASI
[Termes IGN] image Terra-ASTER
[Termes IGN] image thermique
[Termes IGN] sable
[Termes IGN] Sinkiang (Chine)Résumé : (auteur) On the basis of the spectral shape of thermal infrared (TIR) emissivity for sandy land, a remote sensing sand index called the sand differential emissivity index (SDEI) is proposed in this article to simply and conveniently detect sandy land over large areas. The SDEI is evaluated on ground, airborne, and spaceborne thermal emissivity data, and it shows good characterization of sandy land and performs better in sandy land identification than two previous indices. The SDEI was also evaluated in the transition zones of China’s four mega-sandy lands and was applied to long-term land surface emissivity to obtain the spatial distribution and variation in China’s sandy land from 2000 to 2016. The findings showed that a mean accuracy of 96% and a mean kappa coefficient of 0.83 were obtained in the transition zones, and the sandy land in the transition zone exhibited a decreasing trend over the past 17 years and a significant decline in the Mu Us sandy land. Meanwhile, the sandy land area in China decreased by 3.6×104 km 2 (1.53%) by the end of 2016 compared with that in early 2000. Numéro de notice : A2021-527 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3022772 Date de publication en ligne : 25/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3022772 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97977
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 5464 - 5478[article]Semantic unsupervised change detection of natural land cover with multitemporal object-based analysis on SAR images / Donato Amitrano in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
![]()
[article]
Titre : Semantic unsupervised change detection of natural land cover with multitemporal object-based analysis on SAR images Type de document : Article/Communication Auteurs : Donato Amitrano, Auteur ; Raffaella Guida, Auteur ; Pasquale Lervolino, Auteur Année de publication : 2021 Article en page(s) : pp 5494 - 5514 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] biomasse forestière
[Termes IGN] canopée
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification floue
[Termes IGN] classification non dirigée
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] image multitemporelle
[Termes IGN] image radar moirée
[Termes IGN] image RVB
[Termes IGN] image Sentinel-SAR
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] segmentation d'image
[Termes IGN] seuillage d'image
[Termes IGN] texture d'imageRésumé : (auteur) Change detection is one of the most addressed topics in the remote sensing community. When performed on synthetic aperture radar images, the most critical issues are as follows: 1) the labeling of the identified changing patterns and 2) the scarce robustness of classic pixel-based approaches based on threshold segmentation of an appropriate change index, which tend to fail when multiple changes are present in the study area. In this work, a new methodology for unsupervised change detection in vegetation canopy is presented. It overcomes these limitations by exploiting multitemporal geographical object-based image analysis with the aim to make the intrinsic semantic of data emerge and direct the processing toward the identification of precise classes of changes through dictionary-based preclassification and fuzzy combination of class-specific information layers. The proposed methodology has been tested in ten different experiments covering agriculture and clear-cut deforestation applications. The results, validated against literature methods, highlighted the superiority of the proposed approach, which was quantitatively assessed in terms of standard classification quality parameters. On agriculture experiments, it allowed for an average increase in the detection accuracy of about 11% with respect to the best performing literature method, with an increment of the false alarm rate in the order of 0.5%. In case of deforestation, the registered detection accuracy was comparable to that achieved by the literature, while the most significant benefit was the reduction, of more than one-third, of the number of detected false deforestation patterns. Overall, the main characteristics of the proposed architecture are the robustness and the lack of any supervision, which makes it very well-suited for operational scenarios. Numéro de notice : A2021-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3029841 Date de publication en ligne : 22/10/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3029841 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97978
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 5494 - 5514[article]Multisensor data fusion for cloud removal in global and all-season Sentinel-2 imagery / Patrick Ebel in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
![]()
[article]
Titre : Multisensor data fusion for cloud removal in global and all-season Sentinel-2 imagery Type de document : Article/Communication Auteurs : Patrick Ebel, Auteur ; Andrea Meraner, Auteur ; Michael Schmitt, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5866 - 5878 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection des nuages
[Termes IGN] données multicapteurs
[Termes IGN] image Sentinel-MSI
[Termes IGN] nuage
[Termes IGN] reconstruction d'image
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) The majority of optical observations acquired via spaceborne Earth imagery are affected by clouds. While there is numerous prior work on reconstructing cloud-covered information, previous studies are, oftentimes, confined to narrowly defined regions of interest, raising the question of whether an approach can generalize to a diverse set of observations acquired at variable cloud coverage or in different regions and seasons. We target the challenge of generalization by curating a large novel data set for training new cloud removal approaches and evaluate two recently proposed performance metrics of image quality and diversity. Our data set is the first publically available to contain a global sample of coregistered radar and optical observations, cloudy and cloud-free. Based on the observation that cloud coverage varies widely between clear skies and absolute coverage, we propose a novel model that can deal with either extreme and evaluate its performance on our proposed data set. Finally, we demonstrate the superiority of training models on real over synthetic data, underlining the need for a carefully curated data set of real observations. To facilitate future research, our data set is made available online. Numéro de notice : A2021-529 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3024744 Date de publication en ligne : 02/10/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3024744 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97980
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 5866 - 5878[article]SemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images / Daifeng Peng in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
![]()
[article]
Titre : SemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images Type de document : Article/Communication Auteurs : Daifeng Peng, Auteur ; Lorenzo Bruzzone, Auteur ; Yongjun Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5891 - 5906 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] entropie
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Change detection (CD) is one of the main applications of remote sensing. With the increasing popularity of deep learning, most recent developments of CD methods have introduced the use of deep learning techniques to increase the accuracy and automation level over traditional methods. However, when using supervised CD methods, a large amount of labeled data is needed to train deep convolutional networks with millions of parameters. These labeled data are difficult to acquire for CD tasks. To address this limitation, a novel semisupervised convolutional network for CD (SemiCDNet) is proposed based on a generative adversarial network (GAN). First, both the labeled data and unlabeled data are input into the segmentation network to produce initial predictions and entropy maps. Then, to exploit the potential of unlabeled data, two discriminators are adopted to enforce the feature distribution consistency of segmentation maps and entropy maps between the labeled and unlabeled data. During the competitive training, the generator is continuously regularized by utilizing the unlabeled information, thus improving its generalization capability. The effectiveness and reliability of our proposed method are verified on two high-resolution remote sensing data sets. Extensive experimental results demonstrate the superiority of the proposed method against other state-of-the-art approaches. Numéro de notice : A2021-530 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3011913 Date de publication en ligne : 06/08/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3011913 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97986
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 5891 - 5906[article]Target-constrained interference-minimized band selection for hyperspectral target detection / Xiaodi Shang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
![]()
[article]
Titre : Target-constrained interference-minimized band selection for hyperspectral target detection Type de document : Article/Communication Auteurs : Xiaodi Shang, Auteur ; Meiping Song, Auteur ; Yulei Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 6044 - 6064 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande spectrale
[Termes IGN] détection de cible
[Termes IGN] image hyperspectrale
[Termes IGN] interférence
[Termes IGN] rapport signal sur bruitRésumé : (auteur) Wealthy spectral information provided by hyperspectral image (HSI) offers great benefits for many applications in hyperspectral data exploitation. However, processing such high-dimensional data volumes that may result in redundant bands due to its high interband correlation will be a challenge. For target detection and classification, this is particularly true since there may only need a relatively small number of bands that respond one particular target of interest well, while most of other bands do not. Band selection (BS) is a major dimensionality reduction technique to remove the redundant bands and selects a few bands to represent the entire image. However, how to eliminate the effect of uninteresting targets with similar spectra on detection of interesting targets is a severe issue arising in target detection for BS. This article develops a new approach called target-constrained interference-minimized BS (TCIMBS) which can be used to select band subset for specific target detection, while annihilating targets of no interest and suppressing interferers and background. Its idea is derived from target-constrained interference-minimized filter (TCIMF). By taking advantage of TCIMF, two band prioritization (BP) criteria called forward minimum variance BP (FMinV-BP) and backward maximum variance BP (BMaxV-BP) along with their three band search-based BS counterparts called sequential forward TCIMBS (SF-TCIMBS), sequential backward TCIMBS (SB-TCIMBS), and improved SB-TCIMBS (SB-TCIMBS*) are derived. The experimental results suggest that TCIMBS can improve the detection accuracy and also achieve better performance in comparison with several state-of-the-art methods. Numéro de notice : A2021-531 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3010826 Date de publication en ligne : 26/08/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3010826 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97987
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 6044 - 6064[article]Road-network-based fast geolocalization / Yongfei Li in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
![]()
[article]
Titre : Road-network-based fast geolocalization Type de document : Article/Communication Auteurs : Yongfei Li, Auteur ; Dongfang Yang, Auteur ; Shisheng Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 6065 - 6076 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carrefour
[Termes IGN] carte routière
[Termes IGN] cohérence géométrique
[Termes IGN] géolocalisation
[Termes IGN] image aérienne
[Termes IGN] réseau routier
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] superposition d'images
[Termes IGN] transformation homographique
[Termes IGN] zone urbaineRésumé : (auteur) In this article, a road-network-based geolocalization method is proposed. We match roads in the onboard images to the reference road vector map, and realize successful localization over areas as large as a whole city. The road network matching problem is treated as a point cloud registration problem under the homography transformation and solved under the hypothesize-and-test framework. To tackle the point cloud registration problem, a global projective-invariant feature is proposed, which consists of two road intersections augmented with their tangents. In addition, we propose the necessary conditions for the features to match. This can reduce the candidate matching features, thus accelerating the search to a great extent. These matching candidates are first “filtered” with the model consistency check in parameter space and then tested with similarity metrics to identify the correct transformation. The experiments show that our method can localize an aerial image over an area larger than 1000 km 2 within several seconds on a single CPU. Our code can be found at: https://github.com/FlyAlCode/RCLGeolocalization-2.0 . Numéro de notice : A2021-532 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3011034 Date de publication en ligne : 18/08/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3011034 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97989
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 6065 - 6076[article]Ionospheric irregularity layer height and thickness estimation with a GNSS receiver array / Seebany Datta-Barua in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
![]()
[article]
Titre : Ionospheric irregularity layer height and thickness estimation with a GNSS receiver array Type de document : Article/Communication Auteurs : Seebany Datta-Barua, Auteur ; Yang Su, Auteur ; Aurora López Rubio, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 6198 - 6207 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] hauteur de la couche ionosphérique
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle ionosphérique
[Termes IGN] phase GNSS
[Termes IGN] rapport signal sur bruit
[Termes IGN] scintillation
[Termes IGN] série temporelle
[Termes IGN] signal GNSSRésumé : (auteur) This work develops a method by which a kilometer-spaced array of Global Navigation Satellite System (GNSS) scintillation receivers can be used to estimate the ionospheric irregularity layer height and thickness and associated uncertainties on those estimates. Spectra of filtered signal power and phase data are used to estimate these quantities by comparing the observed ratio of the log of the power spectrum to the phase spectrum with the Rytov weak scatter theoretical ratio. A Monte Carlo simulation of noise on the input signal and the irregularity drift velocity is used to quantify the error in estimates of height and thickness. The method is tested using data from the Scintillation Auroral Global Positioning System (GPS) Array (SAGA) sited in the auroral zone at Poker Flat Research Range, Alaska. For the 30-min scintillation period studied, the technique identifies ionospheric scattering from a thick F layer, which correlates well with on-site incoherent scatter radar measurements of peak electron density, for an event previously identified in the literature as likely due to F layer. Numéro de notice : A2021-539 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1109/TGRS.2020.3024173 Date de publication en ligne : 12/10/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3024173 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98013
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 6198 - 6207[article]