IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 59 n° 10Paru le : 01/10/2021 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierSeawater Debye model function at L-band and its impact on salinity retrieval from Aquarius satellite data / Yiwen Zhou in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Seawater Debye model function at L-band and its impact on salinity retrieval from Aquarius satellite data Type de document : Article/Communication Auteurs : Yiwen Zhou, Auteur ; Roger H. Lang, Auteur ; Emmanuel P. Dinnat, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8103 - 8116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] constante diélectrique
[Termes IGN] eau de mer
[Termes IGN] image SAC-D-Aquarius
[Termes IGN] salinité
[Termes IGN] température de surface de la merRésumé : (auteur) A model function of seawater, which specifies the dielectric constant of seawater as a function of salinity, temperature, and frequency, is important for the retrieval of sea surface salinity using satellite data. In 2017, a model function has been developed based on measurement data at 1.4134 GHz using a third-order polynomial expression in salinity ( S ) and temperature ( T ). Although the model showed improvements in salinity retrieval, it had an inconsistent behavior between partitioned salinities. To improve the stability of the model, new dielectric measurements of seawater have been made recently over a broad range of salinities and temperatures to expand the data set used for developing the model function. The structure of the model function has been changed from a polynomial expansion in S and T to a physics-based model consisting of a Debye molecular resonance term plus a conductivity term. Each unknown parameter is expressed in S and T based on the expanded measurement data set. Physical arguments have been used to limit the number of unknown coefficients in these expressions to improve the stability of the model function. The new model function has been employed in the retrieval algorithm of the Aquarius satellite mission to obtain a global salinity map. The retrieved salinity using a different model function is compared with in situ data collected by Argo floats to evaluate the impact and the performance of model functions. The results indicate that the new model function has significant improvements in salinity retrieval compared with other existing models. Numéro de notice : A2021-767 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3045771 Date de publication en ligne : 14/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3045771 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98606
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8103 - 8116[article]Impact of beam diameter and scanning approach on point cloud quality of terrestrial laser scanning in forests / Meinrad Abegg in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Impact of beam diameter and scanning approach on point cloud quality of terrestrial laser scanning in forests Type de document : Article/Communication Auteurs : Meinrad Abegg, Auteur ; Ruedi Boesch, Auteur ; Michael E. Schaepman, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8153 - 8167 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] densité du peuplement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] faisceau laser
[Termes IGN] forêt
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modélisation de la forêt
[Termes IGN] qualité des données
[Termes IGN] semis de points
[Termes IGN] signal lidar
[Termes IGN] Suisse
[Termes IGN] télémétrie laser terrestreRésumé : (auteur) In recent years, portable laser scanning devices and their applications in the context of forest mensuration have undergone rapid methodological and technological developments. Devices have become smaller, lighter, and more affordable, whereas new data-driven methods and software packages have facilitated the derivation of information from point clouds. Thus, terrestrial laser scanning (TLS) is now well established, and laser–object interactions have been studied using theoretical, modeling, and experimental approaches. The representation of scanned objects in terms of accuracy and completeness is a key factor for successful feature extraction. Still, little is known about the influence of TLS and survey properties on point clouds in complex scattering environments, such as forests. In this study, we investigate the influence of laser beam diameter and signal triggering on the quality of point clouds in forested environments. Based on the Swiss National Forest Inventory data, we simulate the TLS measurements in 684 virtual forest stands using a 3-D content creation suite. We show that small objects lack sufficient representation in the point cloud and they are further negatively influenced by large laser beam diameters, dense stands, and large distances from the scanning device. We provide simulations that make it possible to derive a rationale for decisions regarding the appropriate choice of TLS device and survey configuration for forest inventories. Numéro de notice : A2021-709 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1109/TGRS.2020.3037763 Date de publication en ligne : 08/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3037763 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98608
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8153 - 8167[article]GPRInvNet: Deep learning-based ground-penetrating radar data inversion for tunnel linings / Bin Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : GPRInvNet: Deep learning-based ground-penetrating radar data inversion for tunnel linings Type de document : Article/Communication Auteurs : Bin Liu, Auteur ; Yuxiao Ren, Auteur ; Hanchi Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8305 - 8325 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] cible cachée
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] géolocalisation par radar pénétrant GPR
[Termes IGN] reconstruction d'image
[Termes IGN] revêtement
[Termes IGN] tunnelRésumé : (auteur) A DNN architecture referred to as GPRInvNet was proposed to tackle the challenges of mapping the ground-penetrating radar (GPR) B-Scan data to complex permittivity maps of subsurface structures. The GPRInvNet consisted of a trace-to-trace encoder and a decoder. It was specially designed to take into account the characteristics of GPR inversion when faced with complex GPR B-Scan data, as well as addressing the spatial alignment issues between time-series B-Scan data and spatial permittivity maps. It displayed the ability to fuse features from several adjacent traces on the B-Scan data to enhance each trace, and then further condense the features of each trace separately. As a result, the sensitive zones on the permittivity maps spatially aligned to the enhanced trace could be reconstructed accurately. The GPRInvNet has been utilized to reconstruct the permittivity map of tunnel linings. A diverse range of dielectric models of tunnel linings containing complex defects has been reconstructed using GPRInvNet. The results have demonstrated that the GPRInvNet is capable of effectively reconstructing complex tunnel lining defects with clear boundaries. Comparative results with existing baseline methods also demonstrated the superiority of the GPRInvNet. For the purpose of generalizing the GPRInvNet to real GPR data, some background noise patches recorded from practical model testing were integrated into the synthetic GPR data to retrain the GPRInvNet. The model testing has been conducted for validation, and experimental results revealed that the GPRInvNet had also achieved satisfactory results with regard to the real data. Numéro de notice : A2021-710 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3046454 Date de publication en ligne : 13/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3046454 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98610
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8305 - 8325[article]Disaster intensity-based selection of training samples for remote sensing building damage classification / Luis Moya in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Disaster intensity-based selection of training samples for remote sensing building damage classification Type de document : Article/Communication Auteurs : Luis Moya, Auteur ; Christian Geiss, Auteur ; Masakazu Hashimoto, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8288 - 8304 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] déformation d'édifice
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] dommage matériel
[Termes IGN] données de terrain
[Termes IGN] échantillonnage de données
[Termes IGN] image optique
[Termes IGN] inondation
[Termes IGN] séismeRésumé : (auteur) Previous applications of machine learning in remote sensing for the identification of damaged buildings in the aftermath of a large-scale disaster have been successful. However, standard methods do not consider the complexity and costs of compiling a training data set after a large-scale disaster. In this article, we study disaster events in which the intensity can be modeled via numerical simulation and/or instrumentation. For such cases, two fully automatic procedures for the detection of severely damaged buildings are introduced. The fundamental assumption is that samples that are located in areas with low disaster intensity mainly represent nondamaged buildings. Furthermore, areas with moderate to strong disaster intensities likely contain damaged and nondamaged buildings. Under this assumption, a procedure that is based on the automatic selection of training samples for learning and calibrating the standard support vector machine classifier is utilized. The second procedure is based on the use of two regularization parameters to define the support vectors. These frameworks avoid the collection of labeled building samples via field surveys and/or visual inspection of optical images, which requires a significant amount of time. The performance of the proposed method is evaluated via application to three real cases: the 2011 Tohoku-Oki earthquake–tsunami, the 2016 Kumamoto earthquake, and the 2018 Okayama floods. The resulted accuracy ranges between 0.85 and 0.89, and thus, it shows that the result can be used for the rapid allocation of affected buildings. Numéro de notice : A2021-711 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3046004 Date de publication en ligne : 13/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3046004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98615
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8288 - 8304[article]Adaptive edge preserving maps in Markov random fields for hyperspectral image classification / Chao Pan in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Adaptive edge preserving maps in Markov random fields for hyperspectral image classification Type de document : Article/Communication Auteurs : Chao Pan, Auteur ; Xiuping Jia, Auteur ; Jie Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8568 - 8583 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] accentuation de contours
[Termes IGN] algorithme Graph-Cut
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classe d'objets
[Termes IGN] détection de contours
[Termes IGN] étiquette de classe
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] segmentation d'imageRésumé : (auteur) This article presents a novel adaptive edge preserving (aEP) scheme in Markov random fields (MRFs) for hyperspectral image (HSI) classification. MRF regularization usually suffered from over-smoothing at boundaries and insufficient refinement within class objects. This work divides and conquers this problem class-by-class, and integrates K ( K−1 )/2 ( K is the class number) aEP maps (aEPMs) in MRF model. Spatial label dependence measure (SLDM) is designed to estimate the interpixel label dependence for given spectral similarity measure. For each class pair, aEPM is optimized by maximizing the difference between intraclass and interclass SLDM. Then, aEPMs are integrated with multilevel logistic (MLL) model to regularize the raw pixelwise labeling obtained by spectral and spectral–spatial methods, respectively. The graph-cuts-based α β -swap algorithm is modified to optimize the designed energy function. Moreover, to evaluate the final refined results at edges and small details thoroughly, segmentation evaluation metrics are introduced. Experiments conducted on real HSI data denote the superiority of aEPMs in evaluation metrics and region consistency, especially in detail preservation. Numéro de notice : A2021-713 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3035642 Date de publication en ligne : 16/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3035642 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98618
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8568 - 8583[article]Endmember bundle extraction based on multiobjective optimization / Rong Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Endmember bundle extraction based on multiobjective optimization Type de document : Article/Communication Auteurs : Rong Liu, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2021 Article en page(s) : pp 8630 - 8645 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spectrale
[Termes IGN] compensation par faisceaux
[Termes IGN] distribution de Pareto
[Termes IGN] image hyperspectrale
[Termes IGN] modèle linéaire
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) A number of endmember extraction methods have been developed to identify pure pixels in hyperspectral images (HSIs). The majority of them use only one spectrum to represent one kind of material, which ignores the spectral variability problem that particularly characterizes a HSI with high spatial resolution. Only a few algorithms have been developed to identify multiple endmembers representing the spectral variability within each class, called endmember bundle extraction (EBE). This article introduces multiobjective particle swarm optimization for the identification of multiple endmember spectra with variability. Unlike existing convex geometry-based EBE methods, which operate on a single geometry of the dataspace, the proposed method divides the observed data into subsets along the spectral dimension and simultaneously operates on multiple dataspaces to obtain candidate endmembers based on multiobjective particle swarm optimization. The candidate endmembers are then refined by spatial post-processing and sequential forward floating selection to produce the final result. Experiments are conducted on both synthetic and real hyperspectral data to demonstrate the effectiveness of the proposed method in comparison with several state-of-the-art methods. Numéro de notice : A2021-714 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3037249 En ligne : https://doi.org/10.1109/TGRS.2020.3037249 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98621
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8630 - 8645[article]