|
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -) ![]()
[n° ou bulletin]
|
Dépouillements


A parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models / Victoria Sol Galligani in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)
![]()
[article]
Titre : A parameterization of the cloud scattering polarization signal derived from GPM observations for microwave fast radative transfer models Type de document : Article/Communication Auteurs : Victoria Sol Galligani, Auteur ; Die Wang, Auteur ; Paola Belen Corales, Auteur ; Catherine Prigent, Auteur Année de publication : 2021 Article en page(s) : pp 8968 - 8977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] image GPM
[Termes IGN] image radar
[Termes IGN] latitude
[Termes IGN] modèle atmosphérique
[Termes IGN] modèle de transfert radiatif
[Termes IGN] nuage
[Termes IGN] polarisation
[Termes IGN] prévision météorologique
[Termes IGN] radiomètre à hyperfréquence
[Termes IGN] reconstruction du signal
[Termes IGN] variation saisonnièreRésumé : (auteur) Microwave cloud polarized observations have shown the potential to improve precipitation retrievals since they are linked to the orientation and shape of ice habits. Stratiform clouds show larger brightness temperature (TB) polarization differences (PDs), defined as the vertically polarized TB (TBV) minus the horizontally polarized TB (TBH), with ~10 K PD values at 89 GHz due to the presence of horizontally aligned snowflakes, while convective regions show smaller PD signals, as graupel and/or hail in the updraft tend to become randomly oriented. The launch of the global precipitation measurement (GPM) microwave imager (GMI) has extended the availability of microwave polarized observations to higher frequencies (166 GHz) in the tropics and midlatitudes, previously only available up to 89 GHz. This study analyzes one year of GMI observations to explore further the previously reported stable relationship between the PD and the observed TBs at 89 and 166 GHz, respectively. The latitudinal and seasonal variability is analyzed to propose a cloud scattering polarization parameterization of the PD-TB relationship, capable of reconstructing the PD signal from simulated TBs. Given that operational radiative transfer (RT) models do not currently simulate the cloud polarized signals, this is an alternative and simple solution to exploit the large number of cloud polarized observations available. The atmospheric radiative transfer simulator (ARTS) is coupled with the weather research and forecasting (WRF) model, in order to apply the proposed parameterization to the RT simulated TBs and hence infer the corresponding PD values, which show to reproduce the observed GMI PDs well. Numéro de notice : A2021-886 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3049921 Date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3049921 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98871
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 11 (November 2021) . - pp 8968 - 8977[article]Multi-objective CNN-based algorithm for SAR despeckling / Sergio Vitale in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)
![]()
[article]
Titre : Multi-objective CNN-based algorithm for SAR despeckling Type de document : Article/Communication Auteurs : Sergio Vitale, Auteur ; Giampaolo Ferraioli, Auteur ; Vito Pascazio, Auteur Année de publication : 2021 Article en page(s) : pp 9336 - 9349 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] chatoiement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] filtre de déchatoiement
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] restauration d'imageRésumé : (auteur) Deep learning (DL) in remote sensing has nowadays become an effective operative tool: it is largely used in applications, such as change detection, image restoration, segmentation, detection, and classification. With reference to the synthetic aperture radar (SAR) domain, the application of DL techniques is not straightforward due to the nontrivial interpretation of SAR images, especially caused by the presence of speckle. Several DL solutions for SAR despeckling have been proposed in the last few years. Most of these solutions focus on the definition of different network architectures with similar cost functions, not involving SAR image properties. In this article, a convolutional neural network (CNN) with a multi-objective cost function taking care of spatial and statistical properties of the SAR image is proposed. This is achieved by the definition of a peculiar loss function obtained by the weighted combination of three different terms. Each of these terms is dedicated mainly to one of the following SAR image characteristics: spatial details, speckle statistical properties, and strong scatterers identification. Their combination allows balancing these effects. Moreover, a specifically designed architecture is proposed to effectively extract distinctive features within the considered framework. Experiments on simulated and real SAR images show the accuracy of the proposed method compared with the state-of-art despeckling algorithms, both from a quantitative and qualitative point of view. The importance of considering such SAR properties in the cost function is crucial for correct noise rejection and details preservation in different underlined scenarios, such as homogeneous, heterogeneous, and extremely heterogeneous. Numéro de notice : A2021-810 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3034852 Date de publication en ligne : 16/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3034852 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98874
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 11 (November 2021) . - pp 9336 - 9349[article]Accurate mapping method for UAV photogrammetry without ground control points in the map projection frame / Jianchen Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)
![]()
[article]
Titre : Accurate mapping method for UAV photogrammetry without ground control points in the map projection frame Type de document : Article/Communication Auteurs : Jianchen Liu, Auteur ; Wei Xu, Auteur ; Bingxuan Guo, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 9673 - 9681 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] aérotriangulation
[Termes IGN] auto-étalonnage
[Termes IGN] compensation par faisceaux
[Termes IGN] courbure de la Terre
[Termes IGN] distorsion d'image
[Termes IGN] données GNSS
[Termes IGN] hauteur de vol
[Termes IGN] image captée par drone
[Termes IGN] point d'appui
[Termes IGN] précision altimétrique
[Termes IGN] précision cartographique
[Termes IGN] projectionRésumé : (auteur) Unmanned aerial vehicle (UAV) photogrammetry without ground control points (GCPs) can effectively improve production efficiency and reduce production costs; this method is especially advantageous in areas that are difficult for people to reach. However, there are a series of problems in UAV photogrammetry without GCPs. One of the main problems is that the accurate camera parameters cannot be obtained through the on-the-job calibration method; furthermore, the inaccurate principal distance will have a serious impact on the elevation accuracy of object points. The other one is that the projection deformation and earth curvature also have impacts on the elevation accuracy, when the mapping task is carried out in the map projection frame. This article explains the specific reasons of elevation errors and proposes an effective solution. First, the camera self-calibration is performed in a geocentric frame with control strips. Then, the exterior orientation elements of the images are calculated in the map projection frame without control strips. Finally, the elevation errors that are caused by the map projection deformation and the earth’s curvature are corrected. The experimental results show that the proposed method can achieve accurate mapping, and the elevation accuracy has been significantly improved. Numéro de notice : A2021-811 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3052466 Date de publication en ligne : 29/01/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3052466 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98884
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 11 (November 2021) . - pp 9673 - 9681[article]Footprint size design of large-footprint full-waveform LiDAR for forest and topography applications: A theoretical study / Xuebo Yang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)
![]()
[article]
Titre : Footprint size design of large-footprint full-waveform LiDAR for forest and topography applications: A theoretical study Type de document : Article/Communication Auteurs : Xuebo Yang, Auteur ; Cheng Wang, Auteur ; Xiaohuan Xi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 9745 - 9757 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] extraction de la végétation
[Termes IGN] forme d'onde pleine
[Termes IGN] hauteur des arbres
[Termes IGN] lidar à retour d'onde complète
[Termes IGN] onde lidar
[Termes IGN] processus gaussien
[Termes IGN] signal lidarRésumé : (auteur) LiDAR footprint, defined as the illumination area of LiDAR sensor on the ground, is the fundamental unit that the sensor collects information from. The design of footprint size crucially influences the acquired LiDAR signals. For large-footprint full-waveform LiDAR, a well-designed footprint size is indispensable to acquire accurate and complete vertical profiles of scene targets. The methods that design the footprint size are increasingly needed to satisfy various application requirements. In this study, an analytical method to designing the footprint size is proposed for forest and topography applications. It is established based on a mixture Gaussian model and the designed footprint size ensures the signals of vegetation and ground can be completely extracted. Experiment results with our method show that the footprint size is preferably in the range of 10.6–25.0 m for forest application, while it is less than 32.3 m for topography application. The intersection of the two sets satisfies both applications. Furthermore, a series of sensibility studies were performed to analyze the influence of multiple key parameters to the optimal footprint size, including the scene characteristics, instrumental configurations, and application requirements. This study provides a theoretical basis for the design of future large-footprint full-waveform laser altimeters. Numéro de notice : A2021-812 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3054324 Date de publication en ligne : 08/02/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3054324 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98885
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 11 (November 2021) . - pp 9745 - 9757[article]