|
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


A prediction model for surface deformation caused by underground mining based on spatio-temporal associations / Min Ren in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
![]()
[article]
Titre : A prediction model for surface deformation caused by underground mining based on spatio-temporal associations Type de document : Article/Communication Auteurs : Min Ren, Auteur ; Guanwen Cheng, Auteur ; Wancheng Zhu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 94 - 122 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse des risques
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Chine
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] déformation de la croute terrestre
[Termes IGN] déformation de surface
[Termes IGN] mine de fer
[Termes IGN] modèle de simulation
[Termes IGN] règle d'associationMots-clés libres : spatio-temporal association rule mining (STARM) Résumé : (auteur) Accurate predictions of the surface deformation caused by underground mining are crucial for the safe development of underground resources. Although surface deformation has been predicted by artificial intelligence (AI) methods, most AI models are established based on the relationships between surface deformation and influential factors. The lack of consideration of the deformation state transition often leads to errors in the prediction results of catastrophic deformation by conventional AI methods. In this respect, this study introduces a surface deformation prediction model based on spatio-temporal association rule mining (STARM). Surface deformation is classified as excessive deformation zone (EDZ) and hysteretic deformation zone (HDZ), representing different surface deformation stage or state. The spatio-temporal association rules between the monitored EDZ and HDZ data are then mined. A surface deformation prediction model is established according to the spatio-temporal relationship between monitored EDZ and HDZ data. The proposed model is verified based on a practical case study of the Chengchao Iron Mine in China. The data collection of the influential factors is not requisite for the proposed model. It can achieve accurate prediction of the catastrophic deformation that was characterized by deformation state transition. Numéro de notice : A2022-035 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.1080/19475705.2021.2015460 Date de publication en ligne : 21/12/2021 En ligne : https://doi.org/10.1080/19475705.2021.2015460 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99359
in Geomatics, Natural Hazards and Risk > vol 13 n° 1 (2022) . - pp 94 - 122[article]A rapid assessment method for earthquake-induced landslide casualties based on GIS and logistic regression model / Yuqian Dai in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
![]()
[article]
Titre : A rapid assessment method for earthquake-induced landslide casualties based on GIS and logistic regression model Type de document : Article/Communication Auteurs : Yuqian Dai, Auteur ; Xianfu Bai, Auteur ; Gaozhong Nie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 222 - 248 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Chine
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] effondrement de terrain
[Termes IGN] modèle de régression
[Termes IGN] régression logistique
[Termes IGN] secours d'urgence
[Termes IGN] séisme
[Termes IGN] système d'information géographiqueRésumé : (auteur) The accuracy of rapid earthquake assessment and the emergency assessment system for earthquake-induced damages could be substantially enhanced if the casualties triggered by earthquake-induced geological disasters, such as landslides, are subjected to comprehensive scientific evaluation. However, no credible solution for this purpose has been formulated yet. This study suggests a three-step rapid assessment method designed for earthquake-induced landslide casualties based on the GIS and an associated logistic regression model, as follows: (1) Partition of the region to be evaluated as a 1 km × 1 km grid in the GIS, with assignment of a certain amount of population to each of the grid cells as its population attribute. (2) Calculation of the death rate for each grid cell based upon its earthquake-induced landslide susceptibility attribute using the logistic regression model. (3) The earthquake-induced landslide casualties are first determined for each of the kilometer grid cells, and then for the entire region under evaluation. The proposed method was implemented to test the assessment of earthquake-induced landslide casualties in three earthquake-stricken regions. The study reveals the feasibility of the extensibility and applicability of the proposed rapid assessment method for earthquake-induced landslide casualties, and its suitability for similar assessments and calculations of other regions. Numéro de notice : A2022-036 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475705.2021.2017022 Date de publication en ligne : 29/12/2021 En ligne : https://doi.org/10.1080/19475705.2021.2017022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99367
in Geomatics, Natural Hazards and Risk > vol 13 n° 1 (2022) . - pp 222 - 248[article]An assessment of forest loss and its drivers in protected areas on the Copperbelt province of Zambia: 1972–2016 / Darius Phiri in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
![]()
[article]
Titre : An assessment of forest loss and its drivers in protected areas on the Copperbelt province of Zambia: 1972–2016 Type de document : Article/Communication Auteurs : Darius Phiri, Auteur ; Collins Chanda, Auteur ; Vincent R. Nyirenda, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 148 - 166 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aire protégée
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse diachronique
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte thématique
[Termes IGN] classification par arbre de décision
[Termes IGN] couvert forestier
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] gestion forestière durable
[Termes IGN] protection de la biodiversité
[Termes IGN] ZambieRésumé : (auteur) In sub-Saharan Africa, protected areas provide a platform for conserving biodiversity. However, these areas are facing massive pressure due to deforestation, and information on forest dynamics and factors driving the changes in protected areas is generally lacking. This study has two objectives: (1) to assess forest cover changes that have occurred between 1972 and 2016 in Copperbelt Province’s protected areas, and (2) understand the drivers of forest cover changes. The study used thematic land cover maps for six selected years, which were classified using an object-based image analysis (OBIA) approach. We also applied a Classification Tree (CT) approach to assess the drivers of forest cover changes using R statistical software. The findings showed that forest cover in protected areas has been characterised by massive deforestation due to various factors. Between 1972 and 2016, primary and secondary forests showed a decrease of 2,226.43 km2 (11.06%) and an increase of 1,082.93 km2 (4.05%), respectively. The major factors driving forest changes include the levels of precipitation, human population density, elevation, distance from roads, towns and rivers. This study presents consistent information for long-term forest monitoring in protected areas, and informs decision-makers on the levels of deforestation and their drivers for effective forest management. Numéro de notice : A2022-092 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article DOI : 10.1080/19475705.2021.2017021 Date de publication en ligne : 21/12/2021 En ligne : https://doi.org/10.1080/19475705.2021.2017021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99515
in Geomatics, Natural Hazards and Risk > vol 13 n° 1 (2022) . - pp 148 - 166[article]Forest fire susceptibility assessment using google earth engine in Gangwon-do, Republic of Korea / Yong Piao in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
![]()
[article]
Titre : Forest fire susceptibility assessment using google earth engine in Gangwon-do, Republic of Korea Type de document : Article/Communication Auteurs : Yong Piao, Auteur ; Dongkun Lee, Auteur ; Sangjin Park, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 432 - 450 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aléa
[Termes IGN] cartographie des risques
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Corée du sud
[Termes IGN] Google Earth Engine
[Termes IGN] incendie de forêt
[Termes IGN] pente
[Termes IGN] risque naturel
[Termes IGN] vulnérabilitéRésumé : (auteur) Forest fires are one of the most frequently occurring natural hazards, causing substantial economic loss and destruction of forest cover. As the Gangwon-do region in Korea has abundant forest resources and ecological diversity as Korea's largest forest area, spatial data on forest fire susceptibility of the region are urgently required. In this study, a forest fire susceptibility map (FFSM) of Gangwon-do was constructed using Google Earth Engine (GEE) and three machine learning algorithms: Classification and Regression Trees (CART), Random Forest (RF), and Boosted Regression Trees (BRT). The factors related to climate, topography, hydrology, and human activity were constructed. To verify the accuracy, the area under the receiver operating characteristic curve (AUC) was used. The AUC values were 0.846 (BRT), 0.835 (RF), 0.751 (CART). Factor importance analysis was performed to identify the important factors of the occurrence of forest fires in Gangwon-do. The results show that the most important factor in the Gangwon-do region is slope. A slope of approximately 17° (moderately steep) has a considerable impact on the occurrence of forest fires. Human activity and interference are the other important factors that affect forest fires. The established FFSM can support future efforts on forest resource protection and environmental management planning in Gangwon-do. Numéro de notice : A2022-140 Affiliation des auteurs : non IGN Nature : Article DOI : 10.1080/19475705.2022.2030808 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1080/19475705.2022.2030808 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99942
in Geomatics, Natural Hazards and Risk > vol 13 n° 1 (2022) . - pp 432 - 450[article]Flood susceptibility mapping using meta-heuristic algorithms / Alireza Arabameri in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
![]()
[article]
Titre : Flood susceptibility mapping using meta-heuristic algorithms Type de document : Article/Communication Auteurs : Alireza Arabameri, Auteur ; Amir Seyed Danesh, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 949 - 974 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme génétique
[Termes IGN] base de données localisées
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] Google Earth
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] optimisation par essaim de particules
[Termes IGN] SAGA GIS
[Termes IGN] séparateur à vaste marge
[Termes IGN] traitement de données localisées
[Termes IGN] vulnérabilité
[Termes IGN] zone à risqueRésumé : (auteur) Flood is a common global natural hazard, and detailed flood susceptibility maps for specific watersheds are important for flood management measures. We compute the flood susceptibility map for the Kaiser watershed in Iran using machine learning models such as support vector machine (SVM), Particle swarm optimization (PSO), and genetic algorithm (GA) along with ensembles (PSO-GA and SVM-GA). The application of such machine learning models in flood susceptibility assessment and mapping is analyzed, and future research suggestions are presented. The model of flood susceptibility model was constructed based on fifteen causatives: slope, slope aspect, elevation, plan curvature, land use, and land cover, normalize differences vegetation index (NDVI), convergence index (CI), topographical wetness index (TWI), topographic positioning Index (TPI), drainage density (DD), distance to stream, terrain ruggedness index (TRI), terrain surface texture (TST), geology and stream power index (SPI) and flood inventory data which later is divided by 70% for training the model and 30% for validated the model. The model output was evaluated through sensitivity, specificity, accuracy, precision, Cohen Kappa, F-score, and receiver operating curve (ROC). The evaluation of flood susceptibility mapping through the receiver operating curve method along with flood density shows robust results from support vector machine (0.839), particle swarm optimization (0.851), genetic algorithm (0.874), SVM-GA (0.886), and PSO-GA (0.902). Compared have done with some methods commonly used in this susceptibility assessment. A high-quality, informative database is essential for the classification of flood types in flood susceptibility mapping that is very important and helpful to improve the model performances. The performance of the ensemble PSO-GA is better than that of the machine learning model, yielding a high degree of accuracy (AUC-0.902%). Our approach, therefore, provides a novel method for flood susceptibility studies in other watersheds. Numéro de notice : A2022-300 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/19475705.2022.2060138 Date de publication en ligne : 11/04/2022 En ligne : https://doi.org/10.1080/19475705.2022.2060138 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100383
in Geomatics, Natural Hazards and Risk > vol 13 n° 1 (2022) . - pp 949 - 974[article]