[n° ou bulletin]
[n° ou bulletin]
|
Réservation
Réserver ce documentExemplaires (1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
059-2022011 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements


Airborne LiDAR and high resolution multispectral data integration in Eucalyptus tree species mapping in an Australian farmscape / Niva Kiran Verma in Geocarto international, vol 37 n° 1 ([01/01/2022])
![]()
[article]
Titre : Airborne LiDAR and high resolution multispectral data integration in Eucalyptus tree species mapping in an Australian farmscape Type de document : Article/Communication Auteurs : Niva Kiran Verma, Auteur ; David Lamb, Auteur ; Priyakant Sinha, Auteur Année de publication : 2022 Article en page(s) : pp 70 - 90 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Australie
[Termes IGN] carte de la végétation
[Termes IGN] dépérissement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Eucalyptus (genre)
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] précision de la classification
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (auteur) Rapid decline and death of rural Eucalypts trees of all ages and species have been reported in the farmscapes of regional Australia due to various environmental and farming management related factors. The identification of existing farm tree species is important for long term management strategies to provide ecosystem stability in the region. This study explored the feasibility of structural attributes of LiDAR and spectral and spatial characteristics of high resolution remote sensing data to identify and map Eucalyptus tree species. An object based image segmentation and rule-based classification algorithm were developed to delineate tree boundaries and species classification. The integration of two datasets improved the classification accuracy (65%) against their separate classification (52% and 41%, respectively). The identification of tree species will help in getting first-hand information on existing farm trees, which may be used in assessing tree condition in time series related to management practices and complex dieback problem. Numéro de notice : A2022-046 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1700555 Date de publication en ligne : 12/12/2019 En ligne : https://doi.org/10.1080/10106049.2019.1700555 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99412
in Geocarto international > vol 37 n° 1 [01/01/2022] . - pp 70 - 90[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022011 SL Revue Centre de documentation Revues en salle Disponible Simulation of the meltwater under different climate change scenarios in a poorly gauged snow and glacier-fed Chitral River catchment (Hindukush region) / Huma Hayat in Geocarto international, vol 37 n° 1 ([01/01/2022])
![]()
[article]
Titre : Simulation of the meltwater under different climate change scenarios in a poorly gauged snow and glacier-fed Chitral River catchment (Hindukush region) Type de document : Article/Communication Auteurs : Huma Hayat, Auteur ; Adnan Ahmad Tahir, Auteur ; sara Wajid, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 103 - 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bassin hydrographique
[Termes IGN] changement climatique
[Termes IGN] données météorologiques
[Termes IGN] eau de fonte
[Termes IGN] estimation statistique
[Termes IGN] fonte des glaces
[Termes IGN] image Terra-MODIS
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de surface
[Termes IGN] Pakistan
[Termes IGN] prévention des risques
[Termes IGN] ressources en eau
[Termes IGN] ruissellement
[Termes IGN] série temporelle
[Termes IGN] variation saisonnièreRésumé : (auteur) Seasonal and annual water supplies of the rivers originating in the Hindukush-Karakoram-Himalaya (HKH) region of Pakistan are important to manage the Indus basin irrigation system for better agricultural production and its dependent agrarian economy. In this study, we simulated the current and future snowmelt runoff in a poorly gauged river basin of the Hindukush region under Representative Concentration Pathways (RCP) climate change scenarios. Snowmelt Runoff Model (SRM) furnished with satellite snow cover maps and hydro-meteorological data were used to simulate the daily river discharge for the period 2000‒2005. The results indicated that SRM has effectually simulated the runoff in Chitral River with Nash-Sutcliffe model efficiency coefficient of 0.85 (0.84) and 0.88 (0.83) in the basin-wide (zone-wise) application during the calibration and validation periods, respectively. The results obtained under future climate change scenario showed ∼14‒19% increase in mean summer discharge under three mid-21st century RCP (2.6, 4.5 and 8.5) scenarios. While an increase of ∼13‒37% is expected under late-21st century RCP scenarios. This study can help water resource managers to plan and manage peak discharges from the Chitral River Basin in the future and can thus prevent major losses due to floods in the area. Numéro de notice : A2022-047 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1700557 Date de publication en ligne : 12/12/2019 En ligne : https://doi.org/10.1080/10106049.2019.1700557 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99421
in Geocarto international > vol 37 n° 1 [01/01/2022] . - pp 103 - 119[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022011 SL Revue Centre de documentation Revues en salle Disponible A PCA-PD fusion method for change detection in remote sensing multi temporal images / Soltana Achour in Geocarto international, vol 37 n° 1 ([01/01/2022])
![]()
[article]
Titre : A PCA-PD fusion method for change detection in remote sensing multi temporal images Type de document : Article/Communication Auteurs : Soltana Achour, Auteur ; Miloud Chikr Elmezouar, Auteur ; Nasreddine Taleb, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 196 - 213 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] détection automatique
[Termes IGN] détection de changement
[Termes IGN] fusion de données
[Termes IGN] image multibande
[Termes IGN] image multitemporelle
[Termes IGN] image panchromatique
[Termes IGN] méthode statistique
[Termes IGN] seuillage d'imageRésumé : (auteur) In remote sensing, for applications as environment monitoring, change detection based on image processing is one of the most important techniques. To reach high performance various techniques of fusion are exploited using a combination of multi-temporal, multispectral and panchromatic satellite images. A solution for handling such kind of images holds when using some simple statistical methods like the Percent Difference (PD) technique as well as the Principal Component Analysis (PCA) one. In this paper, an automatic change detection method issued from the two previous techniques is proposed and applied on multispectral and panchromatic images captured by a high resolution optical satellite. This approach is characterized by two aspects: the first one consists of the fusion of the different data and the second one performs the detection of the changes for the resulting images. The experimental results show the reasonable quantitative performance and the effectiveness of the proposed method for change detection, consisting of an automatic extraction of most of change information as well as the obtention of better results for most precision metrics consisting of an overall accuracy of up to 91% and a Kappa coefficient of up to 66%, comparing to those obtained using the simple PD and PCA techniques. Numéro de notice : A2022-048 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1713228 Date de publication en ligne : 10/02/2020 En ligne : https://doi.org/10.1080/10106049.2020.1713228 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99441
in Geocarto international > vol 37 n° 1 [01/01/2022] . - pp 196 - 213[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022011 SL Revue Centre de documentation Revues en salle Disponible Application of deep learning with stratified K-fold for vegetation species discrimation in a protected mountainous region using Sentinel-2 image / Efosa Gbenga Adagbasa in Geocarto international, vol 37 n° 1 ([01/01/2022])
![]()
[article]
Titre : Application of deep learning with stratified K-fold for vegetation species discrimation in a protected mountainous region using Sentinel-2 image Type de document : Article/Communication Auteurs : Efosa Gbenga Adagbasa, Auteur ; Samuel Adelabu, Auteur ; Tom W. Okello, Auteur Année de publication : 2022 Article en page(s) : pp 142 - 162 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] distribution spatiale
[Termes IGN] espèce végétale
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] MNS ASTER
[Termes IGN] montagne
[Termes IGN] PoaceaeRésumé : (auteur) Understanding the spatial distribution of vegetation species is essential to gain knowledge on the recovery process of an ecosystem. Few studies have used deep learning and machine learning models for image processing focusing on forest/crop classification. This study, therefore, makes use of a multi-layer perceptron (MLP) deep neural network to discriminate grass species in a mountainous region using Sentinel-2 images. Vegetation indices, Sentinel-1 and ASTER DEM were combined with Sentinel-2 images to improve classification accuracy. Stratified K-fold was used to ensure balanced training and test data. The results, when compared with other commonly used machine learning models, outperformed them all. It produced a better discriminate of the grass species when ASTER DEM was combined with Sentinel-2 images, with overall F1 score of 92%. The results of the species discrimination show a general increase in increaser II species such as Eragrostis curvula and a decrease in decreaser species like Phragmites australis. Numéro de notice : A2022-301 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/10106049.2019.1704070 En ligne : https://doi.org/10.1080/10106049.2019.1704070 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100378
in Geocarto international > vol 37 n° 1 [01/01/2022] . - pp 142 - 162[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022011 SL Revue Centre de documentation Revues en salle Disponible