[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Combined use of Sentinel-1 and Sentinel-2 data for improving above-ground biomass estimation / Narissara Nuthammachot in Geocarto international, vol 37 n° 2 ([15/01/2022])
![]()
[article]
Titre : Combined use of Sentinel-1 and Sentinel-2 data for improving above-ground biomass estimation Type de document : Article/Communication Auteurs : Narissara Nuthammachot, Auteur ; Askar Askar, Auteur ; Dimitris Stratoulias, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 366 - 376 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] biomasse aérienne
[Termes IGN] corrélation
[Termes IGN] échantillonnage de données
[Termes IGN] forêt privée
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] Indonésie
[Termes IGN] précision de l'estimationRésumé : (auteur) Above-ground Biomass (AGB) represents the largest amount of biomass found on earth. Passive and active remote sensors have been a useful tool in estimating AGB for this purpose; nevertheless, both data sources suffer from saturation problems in dense vegetation. A combination of optical and radar data could potentially increase the accuracy of AGB estimation. In this study we evaluate the synergistic use of Sentinel-1 and Sentinel-2 for assessing AGB in a private forest in Yogyakarta, Indonesia. Forty five sample plots of 20 m x 20 m were used as ground truth data. AGB correlated with Sentinel-1 backscatter and Sentinel-2 derived variables with R2 = 0.34 and R2 = 0.82, respectively; nevertheless, the synergistic use of Sentinel-1 and Sentinel-2 yielded the highest accuracy (i.e., R2 = 0.84). The results indicate that AGB in Yogyakarta is most accurately estimated based on the synergy of optical and radar satellite images. Numéro de notice : A2022-049 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1726507 Date de publication en ligne : 13/02/2020 En ligne : https://doi.org/10.1080/10106049.2020.1726507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99440
in Geocarto international > vol 37 n° 2 [15/01/2022] . - pp 366 - 376[article]Multi-temporal remote sensing data to monitor terrestrial ecosystem responses to climate variations in Ghana / Ram Avtar in Geocarto international, vol 37 n° 2 ([15/01/2022])
![]()
[article]
Titre : Multi-temporal remote sensing data to monitor terrestrial ecosystem responses to climate variations in Ghana Type de document : Article/Communication Auteurs : Ram Avtar, Auteur ; Ali P. Yunus, Auteur ; Osamu Saito, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 396 - 412 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] données multitemporelles
[Termes IGN] écosystème
[Termes IGN] Ghana
[Termes IGN] image Landsat
[Termes IGN] image SPOT
[Termes IGN] image Terra-MODIS
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] phénologie
[Termes IGN] variation temporelleRésumé : (auteur) Operational monitoring of vegetation and its response to climate change involves the use of vegetation indices (VIs) in relation to relevant climatic data. This study analyses the temporal variations of vegetation indices in response to climatic data (temperature and precipitation) to better understand the phenological changes in the Wa-West and Tolon districts of Ghana during 1999–2011. This study also examines the inter-annual variation of vegetation indices and lag effects of climate variables (temperature and precipitation) using simple regression and correlation approaches. Results indicate that the mean Normalized Difference Vegetation Index (NDVI) and Normalized Difference Soil Index (NDSI) were significantly correlated with the mean temperature, whereby the value of NDVI increases with a decrease in temperature and value of NDSI increases with an increase in temperature. On examining seasonal variations, our findings indicated that the months of August and September have the highest mean NDVI values. This study confirms that consistently rising temperature and altered precipitation patterns have exerted a strong influence on temporal distributions and productivities of the terrestrial ecosystems of the Tolon and Wa-West districts of Ghana. Furthermore, this research demonstrates how vegetation indices can be used as an indicator to monitor phenological changes in the terrestrial ecosystem. Numéro de notice : A2022-050 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1723716 Date de publication en ligne : 11/02/2020 En ligne : https://doi.org/10.1080/10106049.2020.1723716 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99442
in Geocarto international > vol 37 n° 2 [15/01/2022] . - pp 396 - 412[article]Use of remotely sensed data to estimate tree species diversity as an indicator of biodiversity in Blouberg Nature Reserve, South Africa / Mangana Rampheri in Geocarto international, vol 37 n° 2 ([15/01/2022])
![]()
[article]
Titre : Use of remotely sensed data to estimate tree species diversity as an indicator of biodiversity in Blouberg Nature Reserve, South Africa Type de document : Article/Communication Auteurs : Mangana Rampheri, Auteur ; Timothy Dube, Auteur ; Inos Dhau, Auteur Année de publication : 2022 Article en page(s) : pp 526 - 542 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Afrique du sud (état)
[Termes IGN] arbre (flore)
[Termes IGN] bande spectrale
[Termes IGN] biodiversité végétale
[Termes IGN] conservation de la flore
[Termes IGN] détection de changement
[Termes IGN] espèce végétale
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] indice de végétation
[Termes IGN] régression
[Termes IGN] réserve naturelleRésumé : (auteur) We use remotely sensed data to estimate species diversity in Blouberg Nature Reserve (BNR) in the Limpopo province, South Africa to understand the state of biodiversity since communities’ involvement in conservation initiatives. To achieve this objective, Landsat series data collected before and after community involvement in biodiversity conservation were used in conjunction with selected diversity indices i.e., Shannon-Wiener Index (H’) and Simpson Index (D). Thirty 15 m × 15 m field plots were selected and all trees within each plot were identified, with the help of Botanists. Further, we applied regression analysis to determine the relationship between satellite derived tree species diversity and field observations. The results of the study demonstrated a significant (p Numéro de notice : A2022-052 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article DOI : 10.1080/10106049.2020.1723717 Date de publication en ligne : 16/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1723717 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99443
in Geocarto international > vol 37 n° 2 [15/01/2022] . - pp 526 - 542[article]Increasing territorial planning activities through viewshed analysis / Gheorghe-Gavrilă Hognogi in Geocarto international, vol 37 n° 2 ([15/01/2022])
![]()
[article]
Titre : Increasing territorial planning activities through viewshed analysis Type de document : Article/Communication Auteurs : Gheorghe-Gavrilă Hognogi, Auteur ; Ana-Maria Pop, Auteur ; Simona Mălăescu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 627 - 637 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] aménagement du territoire
[Termes IGN] analyse géovisuelle
[Termes IGN] Carpates
[Termes IGN] carte topographique
[Termes IGN] logique floue
[Termes IGN] point de visibilité
[Termes IGN] Roumanie
[Termes IGN] vision
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Visibility analyses are employed in various fields, from landscape to archeology or territorial planning. Two case studies, of different elevation, from Romania were selected to be considered for setting up some observation points as lookout points. Fuzzy viewshed analysis was performed to evaluate the degree of visibility of certain landscape components and was also used as a tool for territorial planning. The main results of the research were some particular viewshed analysis area according to the dominant visibility directions. This methodology may be useful to local authorities, which are the only responsible bodies for authorizing, creating and setting up lookout points in a given space or for organizing certain planning activities. Numéro de notice : A2022-051 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1730450 Date de publication en ligne : 27/02/2020 En ligne : https://doi.org/10.1080/10106049.2020.1730450 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99444
in Geocarto international > vol 37 n° 2 [15/01/2022] . - pp 627 - 637[article]Semantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network / Ekrem Saralioglu in Geocarto international, vol 37 n° 2 ([15/01/2022])
![]()
[article]
Titre : Semantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network Type de document : Article/Communication Auteurs : Ekrem Saralioglu, Auteur ; Oguz Gungor, Auteur Année de publication : 2022 Article en page(s) : pp 657 - 677 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image Ikonos
[Termes IGN] image multibande
[Termes IGN] image Pléiades-HR
[Termes IGN] image Worldview
[Termes IGN] occupation du sol
[Termes IGN] segmentation sémantique
[Termes IGN] TurquieRésumé : (auteur) Research to improve the accuracy of very high-resolution satellite image classification algorithms is still one of the hot topics in the field of remote sensing. Successful results of deep learning methods in areas such as image classification and object detection have led to the application of these methods to remote sensing problems. Recently, Convolutional Neural Networks (CNNs) are among the most common deep learning methods used in image classification, however, the use of CNN’s in satellite image classification is relatively new. Due to the high computational complexity of 3D CNNs, which aim to extract both spatial and spectral information, 2D CNNs focussing on the extraction of spatial information are often preferred. High-resolution satellite images, however, contain crucial spectral information as well as spatial information. In this study, a 3D-2D CNN model using both spectral and spatial information was applied to extract more accurate land cover information from very high-resolution satellite images. The model was applied on a Worldview-2 satellite image including agricultural product areas such as tea, hazelnut groves and land use classes such as buildings and roads. The results of the CNN based model were also compared against those of the Support Vector Machine (SVM) and Random Forest (RF) algorithms. The post-classification accuracies were obtained using 800 control points generated by a web interface created for crowdsourcing purposes. The classification accuracy was 95.6% for the 3D-2D CNN model, 89.2% for the RF and 86.4% for the SVM. Numéro de notice : A2022-305 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2020.1734871 Date de publication en ligne : 04/03/2020 En ligne : https://doi.org/10.1080/10106049.2020.1734871 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100379
in Geocarto international > vol 37 n° 2 [15/01/2022] . - pp 657 - 677[article]