Mention de date : April 2022
Paru le : 01/04/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Hybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy / Norbert Haala in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
![]()
[article]
Titre : Hybrid georeferencing of images and LiDAR data for UAV-based point cloud collection at millimetre accuracy Type de document : Article/Communication Auteurs : Norbert Haala, Auteur ; Michael Kölle, Auteur ; Michael Cramer, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100014 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] aérotriangulation automatisée
[Termes IGN] appariement d'images
[Termes IGN] collecte de données
[Termes IGN] compensation par faisceaux
[Termes IGN] données lidar
[Termes IGN] géoréférencement direct
[Termes IGN] image captée par drone
[Termes IGN] orthoimage
[Termes IGN] précision millimétrique
[Termes IGN] semis de points
[Termes IGN] zone d'intérêtRésumé : (auteur) During the last two decades, UAV emerged as standard platform for photogrammetric data collection. Main motivation in that early phase was the cost effective airborne image collection at areas of limited size. This was already feasible by rather simple payloads like an off-the-shelf, compact camera and a navigation-grade GNSS sensor. Meanwhile, dedicated sensor systems enable applications that have not been feasible in the past. One example is the airborne collection of dense 3D point clouds at millimetre accuracies, which will be discussed in our paper. For this purpose, we collect both LiDAR and image data from a joint UAV platform and apply a so-called hybrid georeferencing. This process integrates photogrammetric bundle block adjustment with direct georeferencing of LiDAR point clouds. By these means georeferencing accuracy is improved for the LiDAR point cloud by an order of magnitude. We demonstrate the feasibility of our approach in the context of a project, which aims on monitoring of subsidence of about 10 mm/year. The respective area of interest is defined by a ship lock and its vicinity of mixed use. In that area, multiple UAV flights were captured and evaluated for a period of three years. As our main contribution, we demonstrate that 3D point accuracies at sub-centimetre level can be achieved. This is realized by joint orientation of laser scans and images in a hybrid adjustment framework, which enables accuracies corresponding to the GSD of the captured imagery. Numéro de notice : A2022-236 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100014Get rights and content Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100014Get rights and content Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100146
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 4 (April 2022) . - n° 100014[article]Comparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data / Andras Balazs in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
![]()
[article]
Titre : Comparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data Type de document : Article/Communication Auteurs : Andras Balazs, Auteur ; Eero Liski, Auteur ; Sakari Tuominen, Auteur Année de publication : 2022 Article en page(s) : n° 100012 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme génétique
[Termes IGN] bois sur pied
[Termes IGN] classification barycentrique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] covariance
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] peuplement forestier
[Termes IGN] réseau neuronal artificiel
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) In the remote sensing of forests, point cloud data from airborne laser scanning contains high-value information for predicting the volume of growing stock and the size of trees. At the same time, laser scanning data allows a very high number of potential features that can be extracted from the point cloud data for predicting the forest variables. In some methods, the features are first extracted by user-defined algorithms and the best features are selected based on supervised learning, whereas both tasks can be carried out automatically by deep learning methods typically based on deep neural networks. In this study we tested k-nearest neighbor method combined with genetic algorithm (k-NN), artificial neural network (ANN), 2-dimensional convolutional neural network (2D-CNN) and 3-dimensional CNN (3D-CNN) for estimating the following forest variables: volume of growing stock, stand mean height and mean diameter. The results indicate that there were no major differences in the accuracy of the tested methods, but the ANN and 3D-CNN generally resulted in the lowest RMSE values for the predicted forest variables and the highest R2 values between the predicted and observed forest variables. The lowest RMSE scores were 20.3% (3D-CNN), 6.4% (3D-CNN) and 11.2% (ANN) and the highest R2 results 0.90 (3D-CNN), 0.95 (3D-CNN) and 0.85 (ANN) for volume of growing stock, stand mean height and mean diameter, respectively. Covariances of all response variable combinations and all predictions methods were lower than corresponding covariances of the field observations. ANN predictions had the highest covariances for mean height vs. mean diameter and total growing stock vs. mean diameter combinations and 3D-CNN for mean height vs. total growing stock. CNNs have distinct theoretical advantage over the other methods in complex recognition or classification tasks, but the utilization of their full potential may possibly require higher point density clouds than applied here. Thus, the relatively low density of the point clouds data may have been a contributing factor to the somewhat inconclusive ranking of the methods in this study. The input data and computer codes are available at: https://github.com/balazsan/ALS_NNs. Numéro de notice : A2022-265 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2022.100012 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100263
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 4 (April 2022) . - n° 100012[article]