[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierApplication of catastrophe theory to spatial analysis of groundwater potential in a sub-humid tropical region: a hybrid approach / Laishram Kanta Singh in Geocarto international, vol 37 n° 3 ([01/02/2022])
[article]
Titre : Application of catastrophe theory to spatial analysis of groundwater potential in a sub-humid tropical region: a hybrid approach Type de document : Article/Communication Auteurs : Laishram Kanta Singh, Auteur ; Madan K. Jha, Auteur ; V.M. Chowdary, Auteur Année de publication : 2022 Article en page(s) : pp 700 - 719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse multicritère
[Termes IGN] analyse spatiale
[Termes IGN] couche thématique
[Termes IGN] drainage
[Termes IGN] eau souterraine
[Termes IGN] gestion de l'eau
[Termes IGN] Inde
[Termes IGN] pondération
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] zone tropicale humideRésumé : (auteur) Geospatial techniques and Multi-Criteria Decision Analysis (MCDA) play a crucial role in the planning and management of land and water resources. GIS-based MCDA technique "Catastrophe theory" has been recently proposed for evaluating groundwater potential. However, the major limitation of "Catastrophe theory" is that only quantitative factors/thematic layers can be used for assessing groundwater potential, though qualitative factors are equally important. To overcome this inherent limitation, a novel GIS-based MCDA approach named "Hybrid Catastrophe" technique is proposed in this study. The "Hybrid Catastrophe" technique integrates the original "Catastrophe theory" with the "Analytic Hierarchy Process (AHP)" to take into account both qualitative and quantitative thematic layers for assessing groundwater potential, thereby improving the reliability and versatility of the original Catastrophe technique. The applicability of "Hybrid Catastrophe" technique is demonstrated through a case study wherein 8 influential thematic layers (both quantitative and qualitative) were considered for assessing groundwater potential. The four quantitative layers were assigned weights based on the "Catastrophe theory" and the remaining four qualitative layers were assigned weights based on the "AHP theory". These thematic layers were integrated in GIS to delineate groundwater potential zones. The "Hybrid Catastrophe" technique yields four groundwater potential zones in the study area: (i) "very good" (covering 16% of the study area), (ii) "good" (54%), (iii) "moderate" (29%) and (iv) "poor" (1%) and its accuracy was found to be 77% that is reasonably high. The proposed "Hybrid Catastrophe" technique is versatile and it can be successfully applied to other parts of the world for evaluating groundwater potential at diverse spatial scales irrespective of agro-climatic, hydrologic and hydrogeologic conditions. Numéro de notice : A2022-343 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1737970 Date de publication en ligne : 11/03/2020 En ligne : https://doi.org/10.1080/10106049.2020.1737970 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100524
in Geocarto international > vol 37 n° 3 [01/02/2022] . - pp 700 - 719[article]Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images / Alireza Hamedianfar in Geocarto international, vol 37 n° 3 ([01/02/2022])
[article]
Titre : Synergistic use of particle swarm optimization, artificial neural network, and extreme gradient boosting algorithms for urban LULC mapping from WorldView-3 images Type de document : Article/Communication Auteurs : Alireza Hamedianfar, Auteur ; Mohamed Barakat A. Gibril, Auteur ; Mohammadjavad Hosseinpoor, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 773 - 791 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte d'occupation du sol
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image à très haute résolution
[Termes IGN] image Worldview
[Termes IGN] itération
[Termes IGN] optimisation (mathématiques)
[Termes IGN] optimisation par essaim de particules
[Termes IGN] réseau neuronal artificiel
[Termes IGN] segmentation d'image
[Termes IGN] zone urbaineRésumé : (auteur) Geographic object-based image analysis (GEOBIA) has emerged as an effective and evolving paradigm for analyzing very high resolution (VHR) images as it demonstrates preeminence over the traditional pixel-wise methods and enables the utilization of diverse spectral, geometrical, and textural information to for image classification. Among feature selection (FS) methods, metaheuristic FS techniques have recently demonstrated effective performance in the dimensionality reduction of GEOBIA features. In this study, an artificial neural network (ANN) was integrated with particle swarm optimization (PSO) to enhance the learning process and more effectively determine the most significant features and their importance using WorldView-3 (WV-3) satellite data. First, multi-resolution image segmentation parameters were tuned using Taguchi optimization technique and unsupervised segmentation quality measure. Second, the proposed ANN–PSO was compared with PSO under 100 iterations. The ANN–PSO integration achieved lower root mean square error (RMSE) in all the iterations. Third, state-of-the-art extreme gradient boosting (Xgboost) image classifier was used to derive the land use/land cover (LULC) map of the first study area and assess the transferability of the selected features on the second and third regions. The Xgboost classifier obtained 91.68%, 89.54%, and 89.33% overall accuracies for the first, second, and third sites, respectively. ANN contributed to an intelligent approach for identifying which features are more likely to be relevant and discriminate the land cover types. The proposed integrated FS is a promising approach and an efficient tool for determining significant features and enhancing the detection of urban LULC classes from WV-3 data. Numéro de notice : A2022-344 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1737974 Date de publication en ligne : 12/03/2020 En ligne : https://doi.org/10.1080/10106049.2020.1737974 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100525
in Geocarto international > vol 37 n° 3 [01/02/2022] . - pp 773 - 791[article]Building footprint extraction in Yangon city from monocular optical satellite image using deep learning / Hein Thura Aung in Geocarto international, vol 37 n° 3 ([01/02/2022])
[article]
Titre : Building footprint extraction in Yangon city from monocular optical satellite image using deep learning Type de document : Article/Communication Auteurs : Hein Thura Aung, Auteur ; Sao Hone Pha, Auteur ; Wataru Takeuchi, Auteur Année de publication : 2022 Article en page(s) : pp 792 - 812 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Birmanie
[Termes IGN] détection du bâti
[Termes IGN] empreinte
[Termes IGN] image Geoeye
[Termes IGN] image isolée
[Termes IGN] réseau antagoniste génératif
[Termes IGN] vision monoculaireRésumé : (auteur) In this research, building footprints in Yangon City, Myanmar are extracted only from monocular optical satellite image by using conditional generative adversarial network (CGAN). Both training dataset and validating dataset are created from GeoEYE image of Dagon Township in Yangon City. Eight training models are created according to the change of values in three training parameters; learning rate, β1 term of Adam, and number of filters in the first convolution layer of the generator and the discriminator. The images of the validating dataset are divided into four image groups; trees, buildings, mixed trees and buildings, and pagodas. The output images of eight trained models are transformed to the vector images and then evaluated by comparing with manually digitized polygons using completeness, correctness and F1 measure. According to the results, by using CGAN, building footprints can be extracted up to 71% of completeness, 81% of correctness and 69% of F1 score from only monocular optical satellite image. Numéro de notice : A2022-345 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1740949 Date de publication en ligne : 20/03/2020 En ligne : https://doi.org/10.1080/10106049.2020.1740949 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100526
in Geocarto international > vol 37 n° 3 [01/02/2022] . - pp 792 - 812[article]Dynamic modelling of rice leaf area index with quad-source optical imagery and machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 3 ([01/02/2022])
[article]
Titre : Dynamic modelling of rice leaf area index with quad-source optical imagery and machine learning regression models Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Adam Sheka Kanu, Auteur ; Lingbo Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 828 - 840 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Extreme Gradient Machine
[Termes IGN] Green Leaf Area Index
[Termes IGN] image Gaofen
[Termes IGN] image HJ-1A
[Termes IGN] image HJ-1B
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice foliaire
[Termes IGN] modèle de régression
[Termes IGN] rizièreRésumé : (auteur) Optical satellite imagery has been widely used to monitor leaf area index (LAI). However, most studies have focussed on single- or dual-source data, thus making little use of a growing repository of freely available optical imagery. Hence this study has evaluated the feasibility of quad-source optical satellite imagery involving Landsat-8, Sentinel-2A, China’s environment satellite constellation (HJ-1 A and B) and Gaofen-1 (GF-1) in modelling rice green LAI over a test site located in southeast China at two growing seasons. With the application of machine learning regression models including Random Forest (RF), Support Vector Machine (SVM), k-Nearest Neighbour (k-NN) and Gradient Boosting Decision Tree (GBDT), results indicated that regression models based on an ensemble of decision trees (RF and GBDT) were more suitable for modelling rice green LAI. The current study has demonstrated the feasibility of quad-source optical imagery in modelling rice green LAI and this is relevant for cloudy areas. Numéro de notice : A2022-346 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1745299 Date de publication en ligne : 03/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1745299 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100530
in Geocarto international > vol 37 n° 3 [01/02/2022] . - pp 828 - 840[article]