Paru le : 01/06/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Detecting interchanges in road networks using a graph convolutional network approach / Min Yang in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
![]()
[article]
Titre : Detecting interchanges in road networks using a graph convolutional network approach Type de document : Article/Communication Auteurs : Min Yang, Auteur ; Chenjun Jiang, Auteur ; Xiongfeng Yan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1119 - 1139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse vectorielle
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification semi-dirigée
[Termes IGN] détection d'objet
[Termes IGN] échangeur routier
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] modélisation
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Detecting interchanges in road networks benefit many applications, such as vehicle navigation and map generalization. Traditional approaches use manually defined rules based on geometric, topological, or both properties, and thus can present challenges for structurally complex interchange. To overcome this drawback, we propose a graph-based deep learning approach for interchange detection. First, we model the road network as a graph in which the nodes represent road segments, and the edges represent their connections. The proposed approach computes the shape measures and contextual properties of individual road segments for features characterizing the associated nodes in the graph. Next, a semi-supervised approach uses these features and limited labeled interchanges to train a graph convolutional network that classifies these road segments into an interchange and non-interchange segments. Finally, an adaptive clustering approach groups the detected interchange segments into interchanges. Our experiment with the road networks of Beijing and Wuhan achieved a classification accuracy >95% at a label rate of 10%. Moreover, the interchange detection precision and recall were 79.6 and 75.7% on the Beijing dataset and 80.6 and 74.8% on the Wuhan dataset, respectively, which were 18.3–36.1 and 17.4–19.4% higher than those of the existing approaches based on characteristic node clustering. Numéro de notice : A2022-404 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2024195 Date de publication en ligne : 11/03/2022 En ligne : https://doi.org/10.1080/13658816.2021.2024195 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100716
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1119 - 1139[article]The effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events / Sidgley Camargo de Andrade in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
![]()
[article]
Titre : The effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events Type de document : Article/Communication Auteurs : Sidgley Camargo de Andrade, Auteur ; João Porto de Albuquerque, Auteur ; Camilo Restrepo-Estrada, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1140 - 1165 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] auto-régression
[Termes IGN] distribution spatiale
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données socio-économiques
[Termes IGN] hétérogénéité spatiale
[Termes IGN] mobilité urbaine
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] pluie
[Termes IGN] précipitation
[Termes IGN] Sao Paulo
[Termes IGN] TwitterRésumé : (auteur) Although it is acknowledged that urban inequalities can lead to biases in the production of social media data, there is a lack of studies which make an assessment of the effects of intra-urban movements in real-world urban analytics applications, based on social media. This study investigates the spatial heterogeneity of social media with regard to the regular intra-urban movements of residents by means of a case study of rainfall-related Twitter activity in São Paulo, Brazil. We apply a spatial autoregressive model that uses population and income as covariates and intra-urban mobility flows as spatial weights to explain the spatial distribution of the social response to rainfall events in Twitter vis-à-vis rainfall radar data. Results show high spatial heterogeneity in the response of social media to rainfall events, which is linked to intra-urban inequalities. Our model performance (R2=0.80) provides evidence that urban mobility flows and socio-economic indicators are significant factors to explain the spatial heterogeneity of thematic spatiotemporal patterns extracted from social media. Therefore, urban analytics research and practice should consider not only the influence of socio-economic profile of neighborhoods but also the spatial interaction introduced by intra-urban mobility flows to account for spatial heterogeneity when using social media data. Numéro de notice : A2022-405 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1957898 Date de publication en ligne : 03/08/2021 En ligne : https://doi.org/10.1080/13658816.2021.1957898 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100717
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1140 - 1165[article]Multipurpose temporal GIS model for cadastral data management / Joseph Mango in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
![]()
[article]
Titre : Multipurpose temporal GIS model for cadastral data management Type de document : Article/Communication Auteurs : Joseph Mango, Auteur ; Christophe Claramunt, Auteur ; Jamila Ngondo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1205 - 1230 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] données cadastrales
[Termes IGN] historique des données
[Termes IGN] outil d'aide à la décision
[Termes IGN] parcelle cadastrale
[Termes IGN] SIG temporel
[Termes IGN] système d'information foncière
[Termes IGN] Tanzanie
[Termes IGN] ZambieRésumé : (auteur) Past and current cadastral records are among the most valuable information that different countries need to solve land management and planning problems. However, many countries still face critical challenges in adopting modern temporal cadastral systems, including a sound integration of time constructs, efficient data integration and representation methods in the designed models. This research developed a new temporal GIS model to manage spatial and non-spatial temporal cadastral data, namely cadastral parcels, land-use and land-ownerships. Three-time dimensions defined by decision and valid and transaction times were formulated to qualify parcels data. A hybrid approach fusing on the Base State with Amendment and Space-Time Composite models is used to store significant parcel changes and their relationships in two interdependent sub-databases. We used administrative plot identifiers to associate with land use and ownership records, experiencing distinct temporal variations in the third sub-database within the same main repository. We experimented our model with data from Tanzania, and the results from queries demonstrate that the designed model can store all three temporal cadastral data and track their variations semantically and effectively. This model is very useful for storing cadastral parcels, reasons, events, and the transformed parcels’ values to improve decision-making processes. Numéro de notice : A2022-406 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2009483 Date de publication en ligne : 15/12/2022 En ligne : https://doi.org/10.1080/13658816.2021.2009483 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100719
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1205 - 1230[article]Mapping monthly population distribution and variation at 1-km resolution across China / Zhifeng Cheng in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
![]()
[article]
Titre : Mapping monthly population distribution and variation at 1-km resolution across China Type de document : Article/Communication Auteurs : Zhifeng Cheng, Auteur ; Jianghao Wang, Auteur ; Yong Ge, Auteur Année de publication : 2022 Article en page(s) : pp 1166 - 1184 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse spatiale
[Termes IGN] autocorrélation spatiale
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] densité de population
[Termes IGN] distribution spatiale
[Termes IGN] figuration de la densité
[Termes IGN] krigeage
[Termes IGN] population
[Termes IGN] série temporelle
[Termes IGN] téléphonie mobileRésumé : (auteur) Fine-grained inner-annual population data are instrumental in climate change response, resource allocation, and epidemic control. However, such data are currently scarce due to the lack of human-related indicators with both high temporal resolution and long-term coverage that can be used in the process of population spatialization. Here, we estimate monthly 1-km gridded population distribution across China in 2015 using time-series mobile phone positioning data. We construct a hybrid downscaling model to map the gridded population by incorporating random forest and area-to-point kriging. The estimated monthly population products appear to capture inner-annual population variations, especially during special periods, such as the festival, holiday, and short-term labor flow period, which are characterized by large-scale population movements. Additionally, compared with census data, the hybrid model-based results obtained exhibit higher consistency than popular global population products across all spatial extents. Our monthly 1-km data products for the population distribution across China in 2015 provide a credible dataset that can be employed in studies aimed at accurate population-dependent decisions. Numéro de notice : A2022-407 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1854767 Date de publication en ligne : 07/12/2020 En ligne : https://doi.org/10.1080/13658816.2020.1854767 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100724
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1166 - 1184[article]