Paru le : 01/07/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Réservation
Réserver ce documentExemplaires (1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
079-2022071 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements


Exploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation / Huan Ning in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
![]()
[article]
Titre : Exploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation Type de document : Article/Communication Auteurs : Huan Ning, Auteur ; Zhenlong Li, Auteur ; Xinyue Ye, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1317 - 1342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] distorsion d'image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] hauteur du bâti
[Termes IGN] image Streetview
[Termes IGN] lever tachéométrique
[Termes IGN] modèle numérique de surface
[Termes IGN] porteRésumé : (auteur) Street view imagery such as Google Street View is widely used in people’s daily lives. Many studies have been conducted to detect and map objects such as traffic signs and sidewalks for urban built-up environment analysis. While mapping objects in the horizontal dimension is common in those studies, automatic vertical measuring in large areas is underexploited. Vertical information from street view imagery can benefit a variety of studies. One notable application is estimating the lowest floor elevation, which is critical for building flood vulnerability assessment and insurance premium calculation. In this article, we explored the vertical measurement in street view imagery using the principle of tacheometric surveying. In the case study of lowest floor elevation estimation using Google Street View images, we trained a neural network (YOLO-v5) for door detection and used the fixed height of doors to measure doors’ elevation. The results suggest that the average error of estimated elevation is 0.218 m. The depthmaps of Google Street View were utilized to traverse the elevation from the roadway surface to target objects. The proposed pipeline provides a novel approach for automatic elevation estimation from street view imagery and is expected to benefit future terrain-related studies for large areas. Numéro de notice : A2022-465 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1981334 Date de publication en ligne : 06/10/2021 En ligne : https://doi.org/10.1080/13658816.2021.1981334 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100970
in International journal of geographical information science IJGIS > vol 36 n° 7 (juillet 2022) . - pp 1317 - 1342[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022071 SL Revue Centre de documentation Revues en salle Disponible Visualising post-disaster damage on maps: a user study / Thomas Candela in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
![]()
[article]
Titre : Visualising post-disaster damage on maps: a user study Type de document : Article/Communication Auteurs : Thomas Candela, Auteur ; Matthieu Péroche, Auteur ; Arnaud Sallaberry, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1364 - 1393 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte de répartition par points
[Termes IGN] catastrophe naturelle
[Termes IGN] comportement
[Termes IGN] dommage matériel
[Termes IGN] enquête
[Termes IGN] lecture de carte
[Termes IGN] oculométrie
[Termes IGN] psychologie cognitive
[Termes IGN] représentation cartographique
[Termes IGN] sémiologie graphique
[Termes IGN] tessellation
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) The mapping of the damage caused by natural disasters is a crucial step in deciding on the actions to take at the international, national, and local levels. The large variety of representations that we have observed leads to problems of transfer and variations in analysis. In this article, we propose a representation, Regular Dot map (RD), and we compare it to 4 others routinely used to visualise post-disaster damage. Our comparison is based on a user study in which a set of participants carried out various tasks on multiple datasets using the various visualisations. We then analysed the behaviour during the experiment using three approaches: (1) quantitative analysis of user answers according to the reality on the ground, (2) quantitative analysis of user preferences in terms of perceived effectiveness and appearance, and (3) qualitative analysis of the data collected using an eye tracker. The results of this study lead us to believe that RD is the best compromise in terms of effectiveness among the various representations studied. Numéro de notice : A2022-492 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2063872 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.1080/13658816.2022.2063872 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100971
in International journal of geographical information science IJGIS > vol 36 n° 7 (juillet 2022) . - pp 1364 - 1393[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022071 SL Revue Centre de documentation Revues en salle Disponible GANmapper: geographical data translation / Abraham Noah Wu in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
![]()
[article]
Titre : GANmapper: geographical data translation Type de document : Article/Communication Auteurs : Abraham Noah Wu, Auteur ; Filip Biljecki, Auteur Année de publication : 2022 Article en page(s) : pp 1394 - 1422 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes IGN] apprentissage automatique
[Termes IGN] bâtiment
[Termes IGN] distance de Fréchet
[Termes IGN] empreinte
[Termes IGN] morphologie urbaine
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau routier
[Termes IGN] système d'information géographique
[Termes IGN] texture d'imageRésumé : (auteur) We present a new method to create spatial data using a generative adversarial network (GAN). Our contribution uses coarse and widely available geospatial data to create maps of less available features at the finer scale in the built environment, bypassing their traditional acquisition techniques (e.g. satellite imagery or land surveying). In the work, we employ land use data and road networks as input to generate building footprints and conduct experiments in 9 cities around the world. The method, which we implement in a tool we release openly, enables the translation of one geospatial dataset to another with high fidelity and morphological accuracy. It may be especially useful in locations missing detailed and high-resolution data and those that are mapped with uncertain or heterogeneous quality, such as much of OpenStreetMap. The quality of the results is influenced by the urban form and scale. In most cases, the experiments suggest promising performance as the method tends to truthfully indicate the locations, amount, and shape of buildings. The work has the potential to support several applications, such as energy, climate, and urban morphology studies in areas previously lacking required data or inpainting geospatial data in regions with incomplete data. Numéro de notice : A2022-493 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2041643 Date de publication en ligne : 08/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2041643 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100975
in International journal of geographical information science IJGIS > vol 36 n° 7 (juillet 2022) . - pp 1394 - 1422[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022071 SL Revue Centre de documentation Revues en salle Disponible