Transactions in GIS . vol 26 n° 4Paru le : 01/06/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA geospatial workflow for the assessment of public transit system performance using near real-time data / Anastassios Dardas in Transactions in GIS, vol 26 n° 4 (June 2022)
[article]
Titre : A geospatial workflow for the assessment of public transit system performance using near real-time data Type de document : Article/Communication Auteurs : Anastassios Dardas, Auteur ; Brent Hall, Auteur ; Jon Salter, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1642 - 1664 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] ArcGIS
[Termes IGN] Calgary
[Termes IGN] collecte de données
[Termes IGN] données spatiotemporelles
[Termes IGN] itinéraire
[Termes IGN] planification urbaine
[Termes IGN] Python (langage de programmation)
[Termes IGN] stockage de données
[Termes IGN] temps réel
[Termes IGN] trafic routier
[Termes IGN] transport public
[Termes IGN] WebSIGRésumé : (auteur) This article presents the development of a Geographical Information Systems (GIS) workflow that harvests high-volume and high-frequency near real-time data from a public General Transit Feed Specification (GTFS) and calculates metrics for the assessment of on-time and route speed performance for a public transit system. The approach is applied to near real-time and static GTFS data collected over a 9-month period for the City of Calgary, Alberta, Canada. The workflow uses two Azure Virtual Machines (VMs), one to harvest the data and the other to process observations in parallel using Python and the ArcGIS API libraries. A Web GIS application is described that queries data from MongoDB to visualize the performance results in spatiotemporal form. The purpose of the workflow and Web GIS application is to provide actionable information to transit planners to improve public transportation systems. The data management and analysis workflow is transferable to similar GTFS data from other cities. Numéro de notice : A2022-531 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : sans Date de publication en ligne : 02/05/2022 En ligne : https://doi.org/10.1111/tgis.12942 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101078
in Transactions in GIS > vol 26 n° 4 (June 2022) . - pp 1642 - 1664[article]Self-organizing maps as a dimension reduction approach for spatial global sensitivity analysis visualization / Seda Şalap-Ayça in Transactions in GIS, vol 26 n° 4 (June 2022)
[article]
Titre : Self-organizing maps as a dimension reduction approach for spatial global sensitivity analysis visualization Type de document : Article/Communication Auteurs : Seda Şalap-Ayça, Auteur Année de publication : 2022 Article en page(s) : pp 1718 - 1734 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] analyse de sensibilité
[Termes IGN] carte de Kohonen
[Termes IGN] représentation spatiale
[Termes IGN] réseau neuronal artificiel
[Termes IGN] visualisation cartographique
[Termes IGN] voisinage (relation topologique)
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Spatial global sensitivity analysis (SGSA) reveals and ranks the input–output relation in spatial models. The SGSA output is twofold: (1) first-order effects which are the linear relations of every input layer with the output; and (2) high-order effects where the nonlinear interaction among input layers is depicted. The resulting sensitivity maps are twice the number of input layers which is challenging to visualize, considering the limitations of the human cognitive system or visual representations. Finding similar patterns and projecting that similarity into a 2D surface will help to tackle this voluminous visual load. This article presents the implementation of self-organizing maps (SOM), a type of artificial neural network, as a dimension reduction approach for SGSA visualization. SOM is also used for feature selection to identify the most relevant feature for model uncertainty. The winning neurons at SOM are projected as the influence map and the results are compared with conventional visualization techniques. Numéro de notice : A2022-532 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12963 Date de publication en ligne : 21/06/2022 En ligne : https://doi.org/10.1111/tgis.12963 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101080
in Transactions in GIS > vol 26 n° 4 (June 2022) . - pp 1718 - 1734[article]Exploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference / Xiao Huang in Transactions in GIS, vol 26 n° 4 (June 2022)
[article]
Titre : Exploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference Type de document : Article/Communication Auteurs : Xiao Huang, Auteur ; Yang Xu, Auteur ; Rui Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1939 - 1961 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multiéchelle
[Termes IGN] disparité
[Termes IGN] distribution spatiale
[Termes IGN] données socio-économiques
[Termes IGN] épidémie
[Termes IGN] estimation bayesienne
[Termes IGN] hétérogénéité spatiale
[Termes IGN] inférence statistique
[Termes IGN] logement
[Termes IGN] maladie virale
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode robusteRésumé : (auteur) In this study, we aim to reveal hidden patterns and confounders associated with policy implementation and adherence by investigating the home-dwelling stages from a data-driven perspective via Bayesian inference with weakly informative priors and by examining how home-dwelling stages in the USA varied geographically, using fine-grained, spatial-explicit home-dwelling time records from a multi-scale perspective. At the U.S. national level, two changepoints are identified, with the former corresponding to March 22, 2020 (9 days after the White House declared the National Emergency on March 13) and the latter corresponding to May 17, 2020. Inspections at U.S. state and county level reveal notable spatial disparity in home-dwelling stage-related variables. A pilot study in the Atlanta Metropolitan area at the Census Tract level reveals that the self-quarantine duration and increase in home-dwelling time are strongly correlated with the median household income, echoing existing efforts that document the economic inequity exposed by the U.S. stay-at-home orders. To our best knowledge, our work marks a pioneering effort to explore multi-scale home-dwelling patterns in the USA from a purely data-driven perspective and in a statistically robust manner. Numéro de notice : A2022-533 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article DOI : 10.1111/tgis.12918 Date de publication en ligne : 17/03/2022 En ligne : https://doi.org/10.1111/tgis.12918 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101081
in Transactions in GIS > vol 26 n° 4 (June 2022) . - pp 1939 - 1961[article]