|
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -) ![]()
[n° ou bulletin]
|
Dépouillements


Spatial–spectral attention network guided with change magnitude image for land cover change detection using remote sensing images / Zhiyong Lv in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
![]()
[article]
Titre : Spatial–spectral attention network guided with change magnitude image for land cover change detection using remote sensing images Type de document : Article/Communication Auteurs : Zhiyong Lv, Auteur ; Fengjun Wang, Auteur ; Guoqing Cui, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4412712 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] détection de changement
[Termes IGN] image Landsat-TM
[Termes IGN] jeu de données
[Termes IGN] occupation du sol
[Termes IGN] prévention des risques
[Termes IGN] réseau neuronal siamoisRésumé : (auteur) Land cover change detection (LCCD) using remote sensing images (RSIs) plays an important role in natural disaster evaluation, forest deformation monitoring, and wildfire destruction detection. However, bitemporal images are usually acquired at different atmospheric conditions, such as sun height and soil moisture, which usually cause pseudo and noise change in the change detection map. Changed areas on the ground also generally have various shapes and sizes, consequently making the utilization of spatial contextual information a challenging task. In this article, we design a novel neural network with a spatial–spectral attention mechanism and multiscale dilation convolution modules. This work is based on the previously demonstrated promising performance of convolutional neural network for LCCD with RSIs and attempts to capture more positive changes and further enhance the detection accuracies. The learning of the proposed neural network is guided with a change magnitude image. The performance and feasibility of the proposed network are validated with four pairs of RSIs that depict real land cover change events on the Earth’s surface. Comparison of the performance of the proposed approach with that of five state-of-art methods indicates the superiority of the proposed network in terms of ten quantitative evaluation metrics and visual performance. Such as, the proposed network achieved an improvement of about 0.08%–14.87% in terms of overall accuracy (OA) for Dataset-A. Numéro de notice : A2022-660 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3197901 Date de publication en ligne : 17/08/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3197901 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101516
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 8 (August 2022) . - n° 4412712[article]Full-waveform classification and segmentation-based signal detection of single-wavelength bathymetric LiDAR / Xue Ji in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
![]()
[article]
Titre : Full-waveform classification and segmentation-based signal detection of single-wavelength bathymetric LiDAR Type de document : Article/Communication Auteurs : Xue Ji, Auteur ; Bisheng Yang, Auteur ; Yuan Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4208714 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de Levenberg-Marquardt
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du signal
[Termes IGN] forme d'onde pleine
[Termes IGN] Hainan (Chine)
[Termes IGN] lidar bathymétrique
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) Single-wavelength bathymetric light detection and ranging (LiDAR) (532 nm) can provide seamless meter- and submeter-scale digital elevation model (DEMs) of both the terrestrial surface and seafloor. However, mixed terrestrial and bathymetric surfaces obtained by this sensor are challenging for full-waveform (FW) signal detection. This study addresses the issues in two FW mixed surfaces: accurate classification of terrestrial and nonterrestrial waveforms from the original waveforms without auxiliary information and flexible detection of peaks based on a new FW theoretical model. A novel FW signal detection model (FWSD) for single-wavelength bathymetric LiDAR is proposed without complex feature extraction and iterative procedure through waveform classification and segmentation. The raw FWs are divided into five categories for subsequent signal detection using a convolutional neural network that merges local descriptors with contextual information. The signal detection task is then split into FW segment recognition and peak extraction using a new FW model, which integrates a leapfrog sliding window FW segmentation, an improved extreme learning machine (ELM) algorithm for FW segment recognition, and a flexible signal detection framework. To search for the optimal initial parameters for ELM, a self-annealing particle swarm optimization (SAPSO) algorithm is introduced, and the output weight is adjusted by online sequence to improve its generalization. When combined with the Richardson–Lucy deconvolution (RLD) algorithm, FWSD can be adapted to deal with shallow water waveforms. Finally, a test demonstration with an airborne dataset shows that FWSD has higher detection efficiency and higher accuracy than Levenberg–Marquardt algorithm optimized generalized Gaussian model (LM-GGM) and RLD algorithm. Numéro de notice : A2022-661 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3198168 Date de publication en ligne : 11/08/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3198168 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101517
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 8 (August 2022) . - n° 4208714[article]Hyperspectral unmixing using transformer network / Preetam Ghosh in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
![]()
[article]
Titre : Hyperspectral unmixing using transformer network Type de document : Article/Communication Auteurs : Preetam Ghosh, Auteur ; Swalpa Kumar Roy, Auteur ; Bikram Koirala, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5535116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image hyperspectraleRésumé : (auteur) Transformers have intrigued the vision research community with their state-of-the-art performance in natural language processing. With their superior performance, transformers have found their way into the field of hyperspectral image classification and achieved promising results. In this article, we harness the power of transformers to conquer the task of hyperspectral unmixing and propose a novel deep neural network-based unmixing model with transformers. A transformer network captures nonlocal feature dependencies by interactions between image patches, which are not employed in convolutional neural network (CNN) models, and hereby has the ability to enhance the quality of the endmember spectra and the abundance maps. The proposed model is a combination of a convolutional autoencoder and a transformer. The hyperspectral data is encoded by the convolutional encoder. The transformer captures long-range dependencies between the representations derived from the encoder. The data are reconstructed using a convolutional decoder. We applied the proposed unmixing model to three widely used unmixing datasets, that is, Samson, Apex, and Washington DC Mall, and compared it with the state-of-the-art in terms of root mean squared error and spectral angle distance. The source code for the proposed model will be made publicly available at https://github.com/preetam22n/DeepTrans-HSU . Numéro de notice : A2022-662 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3196057 Date de publication en ligne : 03/08/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3196057 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101518
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 8 (August 2022) . - n° 5535116[article]