Forests . vol 13 n° 9Paru le : 01/09/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierExperimental precipitation reduction slows down litter decomposition but exhibits weak to no effect on soil organic carbon and nitrogen stocks in three Mediterranean forests of Southern France / Mathieu Santonja in Forests, vol 13 n° 9 (september 2022)
[article]
Titre : Experimental precipitation reduction slows down litter decomposition but exhibits weak to no effect on soil organic carbon and nitrogen stocks in three Mediterranean forests of Southern France Type de document : Article/Communication Auteurs : Mathieu Santonja, Auteur ; Susana Pereira, Auteur ; Thierry Gauquelin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1485 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] azote
[Termes IGN] changement climatique
[Termes IGN] déchet organique
[Termes IGN] écosystème forestier
[Termes IGN] forêt méditerranéenne
[Termes IGN] France (administrative)
[Termes IGN] litière
[Termes IGN] Pinus halepensis
[Termes IGN] précipitation
[Termes IGN] puits de carbone
[Termes IGN] Quercus ilex
[Termes IGN] Quercus pubescens
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Forest ecosystems are some of the largest carbon (C) reservoirs on earth. Pinus halepensis Mill., Quercus ilex L. and Quercus pubescens Willd. represent the dominant tree cover in the Mediterranean forests of southern France. However, their contributions to the French and global forest C and nitrogen (N) stocks are frequently overlooked and inaccurately quantified and little is known about to what extent the ongoing climate change can alter these stocks. We quantified the soil organic C (SOC) and N (SN) stocks in Mediterranean forests dominated by these tree species and evaluated to what extent an experimental precipitation reduction (about −30% yearly) affects these stocks and the litter decomposition efficiency. Litter mass losses were 55.7, 49.8 and 45.7% after 24 months of decomposition in Q. ilex, Q. pubescens and P. halepensis forests, respectively, and were 19% lower under drier climatic conditions. The SOC stocks were 14.0, 16.7 and 18.5 Mg ha−1 and the SN stocks were 0.70, 0.93 and 0.88 Mg ha−1 in Q. ilex, Q. pubescens and P. halepensis forests, respectively. The shallowness and stoniness of these Mediterranean forests could explain these limited stocks. By distinguishing the organic from the organo–mineral layer, we showed 74% less SOC in the organic layer of the P. halepensis forest under drier conditions, while no difference was detected in the organo–mineral layer or in the two oak forests. This last finding deserves further investigation and points out the necessity to distinguish the organic from the organo–mineral layer to detect the first impacts of climate change on SOC stocks. Numéro de notice : A2022-753 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f13091485 Date de publication en ligne : 14/09/2022 En ligne : https://doi.org/10.3390/f13091485 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101756
in Forests > vol 13 n° 9 (september 2022) . - n° 1485[article]Forest tree species classification based on Sentinel-2 images and auxiliary data / Haotian You in Forests, vol 13 n° 9 (september 2022)
[article]
Titre : Forest tree species classification based on Sentinel-2 images and auxiliary data Type de document : Article/Communication Auteurs : Haotian You, Auteur ; Yuanwei Huang, Auteur ; Zhigang Qin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] dioxyde d'azote
[Termes IGN] distribution spatiale
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-MSI
[Termes IGN] phénologie
[Termes IGN] précipitation
[Termes IGN] réflectance spectrale
[Termes IGN] température de l'air
[Termes IGN] texture du sol
[Termes IGN] topographie localeRésumé : (auteur) Most research on forest tree species classification based on optical image data uses information such as spectral reflectance, vegetation index, texture, and phenology data. However, owing to the limited spectral resolution of multispectral images and the high cost of hyperspectral data, there is room for improvement in the classification of tree species in large areas based on optical images. The combined application of multispectral images and other auxiliary data can provide a new method for improving tree species classification accuracy. Hence, Sentinel-2 images were used to extract spectral reflectance, spectral index, texture, and phenological information. Data for topography, precipitation, air temperature, ultraviolet aerosol index, NO2 concentration, and other variables were included as auxiliary data. Models for forest tree species classification were constructed through feature combination and feature optimization using the random forest (RF), gradient tree boost (GTB), support vector machine (SVM), and classification and regression tree (CART) algorithms. The classification results of 16 feature combinations with the 4 classification methods were compared, and the contributions of different features to the classification models of forest tree species were evaluated. Finally, the optimal classification model was selected to identify the spatial distribution of forest tree species in the study area. The model based on feature optimization gave the best results among the 16 feature combination models. The overall accuracy and kappa coefficient were increased by 18% and 0.21, respectively, compared with the spectral classification model, and by 17% and 0.20, respectively, compared with the spectral and spectral index classification model. By analyzing the feature optimization model, it was found that terrain, ultraviolet aerosol index, and phenological information ranked as the top three features in terms of importance. Although the importance of spectral reflectance and spectral index features was lower, the number of feature variables accounted for a large proportion of the total. The importance of commonly used texture features was limited, and these features were not present in the feature optimization model. The RF algorithm had the highest classification accuracy, with an overall accuracy of 82.69% and a kappa coefficient of 0.80, among the four classification algorithms. The results of GTB were close to those of RF, and the difference in overall classification accuracy was only 0.14%. However, the results of the SVM and CART algorithms were relatively weaker, with overall classification accuracies of about 70%. It can be concluded that the combined application of Sentinel-2 images and auxiliary data can improve forest tree species classification accuracy. The model based on feature optimization achieved the highest classification accuracy among the 16 feature combination models. The spectral reflectance and spectral index data extracted from optical images are useful for tree species classification, but the effect of texture features was very limited. Auxiliary data, such as topographic features, ultraviolet aerosol index, phenological features, NO2 concentration features, topographic diversity features, precipitation features, temperature features, and multi-scale topographic location index data, can effectively improve forest tree species classification accuracy. The RF algorithm had the highest accuracy, and it can be used for tree species classification space distribution identification. The combined application of Sentinel-2 images and auxiliary data can improve classification accuracy, but the highest accuracy of the model was only 82.69%, which leaves room for improvement. Thus, more effective auxiliary data and the vertical structural parameters extracted from satellite LiDAR can be combined with multispectral images to improve forest tree species classification accuracy in future research. Numéro de notice : A2022-754 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13091416 Date de publication en ligne : 02/09/2022 En ligne : https://doi.org/10.3390/f13091416 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101757
in Forests > vol 13 n° 9 (september 2022) . - n° 1416[article]Estimating carbon stocks and biomass expansion factors of urban greening trees using terrestrial laser scanning / Linlin Wu in Forests, vol 13 n° 9 (september 2022)
[article]
Titre : Estimating carbon stocks and biomass expansion factors of urban greening trees using terrestrial laser scanning Type de document : Article/Communication Auteurs : Linlin Wu, Auteur ; Yongjun Shi, Auteur ; Fanyi Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1389 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biomasse forestière
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt urbaine
[Termes IGN] houppier
[Termes IGN] puits de carbone
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestre
[Termes IGN] volume en boisRésumé : (auteur) Urban forest carbon sequestration represents an important component of the global forest carbon pool; however, accurate measurements are limited by the inability of existing field stand models to match the specificity of urban greening species. Herein, canopy volume, carbon stock, and the biomass expansion factor (BEF) of 30 Koelreuteria paniculate trees were measured based on terrestrial laser scanning (TLS) and compared to the results of existing wood volume and carbon stock model measurements. The findings revealed that (1) TLS point cloud data were highly reproducible and accurate (root mean square error of tree height and diameter at breast height were ±0.35 m and ±0.33 cm, respectively). (2) Owing to human interference and cluttered urban environments, the BEF of urban greening tree species fluctuated irregularly, considerably different from that of natural forest stands. (3) Leaf carbon stocks were influenced by the size of the voxel. (4) Different tree measurement factors maintained variable degrees of influence on BEF (height under branch, volume of thick branch, crown width, and projected areas of tree-crown produced correlation coefficients of −0.64, 0.54, 0.45, and 0.43, respectively). Accordingly, the carbon stock and BEF of urban greening tree species can be accurately calculated via TLS without damage. Numéro de notice : A2022-755 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13091389 Date de publication en ligne : 31/08/2022 En ligne : https://doi.org/10.3390/f13091389 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101758
in Forests > vol 13 n° 9 (september 2022) . - n° 1389[article]