IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 60 n° 10Paru le : 01/10/2022 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA relation-augmented embedded graph attention network for remote sensing object detection / Shu Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)
[article]
Titre : A relation-augmented embedded graph attention network for remote sensing object detection Type de document : Article/Communication Auteurs : Shu Tian, Auteur ; Lihong Kang, Auteur ; Xiangwei Xing, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1000718 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] graphe
[Termes IGN] image à haute résolution
[Termes IGN] information sémantique
[Termes IGN] relation sémantique
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal de graphes
[Termes IGN] SIFT (algorithme)Résumé : (auteur) Multiclass geospatial object detection in high spatial resolution remote sensing imagery (HSRI) is still a challenging task. The main reason is that the objects in HRSI are location-variable and semantic-confusable, which results in the difficulties in differentiating the complicated spatial patterns and deriving the implicitly semantic labels among different categories of objects. In this article, we propose a relation-augmented embedded graph attention network (EGAT), which enables the full exploitation of the underlying spatial and semantic relations among objects for improving the detection performance. Specifically, we first construct two sets of spatial and semantic graphs of objects–objects for object relations modeling. Second, a Siamese architecture-based embedding spatial and semantic graph attention network is designed for relations reasoning, which is implemented by introducing the long short-term memory (LSTM) mechanism into the EGAT, for learning the relations among different categories of intraobjects and interobjects. Driven by the spatial and semantic LSTM, the EGAT-LSTM can adaptively focus on the critical information of reason graphs for spatial–semantic correlation discrimination in the embedding non-Euclidean feature space. By this way, the EGAT-LSTM can effectively capture the global and local spatial–semantic relationships of objects–objects, and then produce relations-augmented features for improving the performance of object detection. We conduct comprehensive experiments on three public datasets for multiclass geospatial object detection. Our method achieves state-of-the-art performance, which demonstrates the superiority and effectiveness of the proposed method. Numéro de notice : A2022-766 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3073269 Date de publication en ligne : 18/05/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3073269 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101788
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 10 (October 2022) . - n° 1000718[article]Single-image super-resolution for remote sensing images using a deep generative adversarial network with local and global attention mechanisms / Yadong Li in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)
[article]
Titre : Single-image super-resolution for remote sensing images using a deep generative adversarial network with local and global attention mechanisms Type de document : Article/Communication Auteurs : Yadong Li, Auteur ; Sébastien Mavromatis, Auteur ; Feng Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 3000224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image isolée
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] pouvoir de résolution spectrale
[Termes IGN] reconstruction d'image
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Super-resolution (SR) technology is an important way to improve spatial resolution under the condition of sensor hardware limitations. With the development of deep learning (DL), some DL-based SR models have achieved state-of-the-art performance, especially the convolutional neural network (CNN). However, considering that remote sensing images usually contain a variety of ground scenes and objects with different scales, orientations, and spectral characteristics, previous works usually treat important and unnecessary features equally or only apply different weights in the local receptive field, which ignores long-range dependencies; it is still a challenging task to exploit features on different levels and reconstruct images with realistic details. To address these problems, an attention-based generative adversarial network (SRAGAN) is proposed in this article, which applies both local and global attention mechanisms. Specifically, we apply local attention in the SR model to focus on structural components of the earth’s surface that require more attention, and global attention is used to capture long-range interdependencies in the channel and spatial dimensions to further refine details. To optimize the adversarial learning process, we also use local and global attentions in the discriminator model to enhance the discriminative ability and apply the gradient penalty in the form of hinge loss and loss function that combines L1 pixel loss, L1 perceptual loss, and relativistic adversarial loss to promote rich details. The experiments show that SRAGAN can achieve performance improvements and reconstruct better details compared with current state-of-the-art SR methods. A series of ablation investigations and model analyses validate the efficiency and effectiveness of our method. Numéro de notice : A2022-767 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3093043 Date de publication en ligne : 12/07/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3093043 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101789
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 10 (October 2022) . - n° 3000224[article]Potential and limitation of PlanetScope images for 2-D and 3-D Earth surface monitoring with example of applications to glaciers and earthquakes / Saif Aati in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)
[article]
Titre : Potential and limitation of PlanetScope images for 2-D and 3-D Earth surface monitoring with example of applications to glaciers and earthquakes Type de document : Article/Communication Auteurs : Saif Aati , Auteur ; Jean-Philippe Avouac, Auteur ; Ewelina Rupnik , Auteur ; Marc Pierrot-Deseilligny , Auteur Année de publication : 2022 Article en page(s) : n° 4512919 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de scène 3D
[Termes IGN] artefact
[Termes IGN] image PlanetScope
[Termes IGN] modèle de déformation des images
[Termes IGN] modèle par fonctions rationnelles
[Termes IGN] séisme
[Termes IGN] surveillance géologiqueRésumé : (auteur) The Planet PlanetScope (PS) CubeSat constellation acquires high-resolution optical images that cover the entire surface of the Earth daily, enabling an unprecedented capability to monitor the Earth’s surface changes. However, our analysis reveals artifacts of the geometry of PS images related to the imaging system and processing issues, limiting the usability of these data for various Earth science applications, including the monitoring of glaciers, dune motion, or the measurement of ground deformation due to earthquakes and landslides. Here, we analyze these artifacts and propose ways to remediate them. We use two examples to evaluate the data and assess the performance of our proposed approaches. The first is the ground deformation caused by the 2019 Ridgecrest earthquake sequence, California, USA, and the second is the 2018–2019 surge of the Shisper glacier in the Karakorum. Using an image correlation technique, we show that PS images exhibit several geometric artifacts, such as scene-to-scene misregistration, inconsistence geolocation accuracy between spectral bands, and topographic artifacts. Altogether, these artifacts make a quantitative analysis of ground displacement difficult and inaccurate. We present a method that remediates most of these geometric artifacts. In addition, we propose a framework for selecting the most appropriate images and a procedure for refining the rational function model (RFM) of unrectified images to monitor surface displacements and topography changes in 3-D. These tools should enhance the use of PS images for Earth science applications. Numéro de notice : A2022-951 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3215821 Date de publication en ligne : 19/10/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3215821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103278
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 10 (October 2022) . - n° 4512919[article]