Forests . vol 13 n° 10Paru le : 01/10/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierInvestigation of recognition and classification of forest fires based on fusion color and textural features of images / Cong Li in Forests, vol 13 n° 10 (October 2022)
[article]
Titre : Investigation of recognition and classification of forest fires based on fusion color and textural features of images Type de document : Article/Communication Auteurs : Cong Li, Auteur ; Qiang Liu, Auteur ; Binrui Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse texturale
[Termes IGN] base de données d'images
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image RVB
[Termes IGN] incendie de forêt
[Termes IGN] matrice de co-occurrence
[Termes IGN] motif binaire local
[Termes IGN] niveau de gris (image)Résumé : (auteur) An image recognition and classification method based on fusion color and textural features was studied. Firstly, the suspected forest fire region was segmented via the fusion RGB-YCbCr color spaces. Then, 10 kinds of textural features were extracted by a local binary pattern (LBP) algorithm and 4 kinds of textural features were extracted by a gray-level co-occurrence matrix (GLCM) algorithm from the suspected fire region. In terms of its application, a database of the forest fire textural feature vector of three scenes was constructed, including forest images without fire, forest images with fire, and forest images with fire-like interference. The existence of forest fires can be recognized based on the database via a support vector machine (SVM). The results showed that the method’s recognition rate for forest fires reached 93.15% and that it had a strong robustness with respect to distinguishing fire-like interference, which provides a more effective scheme for forest fire recognition. Numéro de notice : A2022-834 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13101719 Date de publication en ligne : 18/10/2022 En ligne : https://doi.org/10.3390/f13101719 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102030
in Forests > vol 13 n° 10 (October 2022) . - n° 1719[article]Novel algorithm based on geometric characteristics for tree branch skeleton extraction from LiDAR point cloud / Jie Yang in Forests, vol 13 n° 10 (October 2022)
[article]
Titre : Novel algorithm based on geometric characteristics for tree branch skeleton extraction from LiDAR point cloud Type de document : Article/Communication Auteurs : Jie Yang, Auteur ; Xiaorong Wen, Auteur ; Qiulai Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1534 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] branche (arbre)
[Termes IGN] C++
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] itération
[Termes IGN] modélisation de la forêt
[Termes IGN] semis de points
[Termes IGN] squelettisationRésumé : (auteur) More accurate tree models, such as branch skeleton, are needed to acquire forest inventory data. Currently available algorithms for constructing a branch skeleton from a LiDAR point cloud have low accuracy with problems such as irrational connection near trunk bifurcation, excessive central deviation and topological errors. Using the C++ and PCL library, a novel algorithm of the incomplete simulation of tree transmitting water and nutrients (ISTTWN), based on geometric characteristics for tree branch skeleton extraction, was developed in this research. The algorithm is an incomplete simulation of tree transmitting water and nutrients. Improvements were made to improve the time and memory consumption. The result show that the ISTTWN algorithm without any improvements is quite time consuming but has consecutive output. After improvement with iteration, the process is faster and has more detailed output. Breakpoint connection is added to recover continuity. The ISTTWN algorithm with improvements can produce a more accurate skeleton and cost less time than a previous algorithm. The superiority and effectiveness of the method are demonstrated, which provides a reference for the subsequent study of tree modeling and a prospect of application in other fields, such as virtual reality, computer games and movie scenes. Numéro de notice : A2022-835 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13101534 Date de publication en ligne : 17/09/2022 En ligne : https://doi.org/10.3390/f13101534 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102032
in Forests > vol 13 n° 10 (October 2022) . - n° 1534[article]