Paru le : 01/12/2022 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierThere’s no best model! Addressing limitations of land-use scenario modelling through multi-model ensembles / Richard J. Hewitt in International journal of geographical information science IJGIS, vol 36 n° 12 (December 2022)
[article]
Titre : There’s no best model! Addressing limitations of land-use scenario modelling through multi-model ensembles Type de document : Article/Communication Auteurs : Richard J. Hewitt, Auteur ; Majid Shadman Roodposhti, Auteur ; Brett A. Bryan, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] automate cellulaire
[Termes IGN] étalonnage de modèle
[Termes IGN] étalonnage des données
[Termes IGN] incertitude des données
[Termes IGN] utilisation du solRésumé : (auteur) Cellular automata models are popular tools for exploring future land change pathways. But simulation modelling approaches often focus too narrowly on calibration against historic reference maps, limiting the diversity of possible outcomes. We argue that, contrary to what is commonly believed, there is no ‘best model’, and that model specification and calibration accuracy depend on the objective of the research. We propose a multi-model ensemble approach, in which a wide range of models and calibration rules sets are systematically tested against multiple metrics. We apply our approach to a case study in Spain. No single model performed well for all statistics, illustrating the danger of cherry-picking statistics for best performance. In our case study, accounting for historic land changes in model design was useful for simulating compact urban development, but limited the variability of simulation outcomes. The accessibility model driver improved urban pattern replication, while suitability without accessibility was useful for simulating low-density development encroaching on natural areas. Rather than abandoning calibrations that show low agreement with reference maps based on a small number of metrics we should seek to understand what each metric is telling us and use this information to enrich the diversity of simulated outcomes. Numéro de notice : A2022-616 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2098299 Date de publication en ligne : 03/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2098299 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101372
in International journal of geographical information science IJGIS > vol 36 n° 12 (December 2022)[article]Updating and backdating analyses for mitigating uncertainties in land change modeling: a case study of the Ci Kapundung upper water catchment area, Java Island, Indonesia / Medria Shekar Rani in International journal of geographical information science IJGIS, vol 36 n° 12 (December 2022)
[article]
Titre : Updating and backdating analyses for mitigating uncertainties in land change modeling: a case study of the Ci Kapundung upper water catchment area, Java Island, Indonesia Type de document : Article/Communication Auteurs : Medria Shekar Rani, Auteur ; Ross Cameron, Auteur ; Olaf Schrott, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2549 - 2562 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] bassin hydrographique
[Termes IGN] carte thématique
[Termes IGN] changement d'occupation du sol
[Termes IGN] Java (île de)
[Termes IGN] mise à jour
[Termes IGN] modèle de Markov
[Termes IGN] modélisation spatiale
[Termes IGN] Perceptron multicoucheRésumé : (auteur) In developing countries, data gaps are common and lead to uncertainties in land cover change analysis. This study demonstrates how to mitigate uncertainties in modeling land change in the Ci Kapundung upper water catchment area by comparing the outcomes of two simulation phases. A conventional cellular automata (CA)–Markov model was complemented with a multilayer perceptron (MLP) to project future land cover maps in the study area. The CA–Markov–MLP model results in high uncertainties in forested sites where a data gap is apparent in the input data (land cover maps and driver variables) and parameters. The results show that the model accuracy is improved from 47.90% in the first phase to 81.36% in the second phase. Both first and second phases integrate six demographic–economic and environmental drivers in the modeling, but the second phase also incorporates an updating and backdating analysis to revise the base-maps. This study suggests that uncertainties can be mitigated by linking such base-map revision process with the updating and backdating analyses using remote sensing datasets retrieved at different times. Numéro de notice : A2022-845 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2103820 Date de publication en ligne : 28/07/2022 En ligne : https://doi.org/10.1080/13658816.2022.2103820 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102076
in International journal of geographical information science IJGIS > vol 36 n° 12 (December 2022) . - pp 2549 - 2562[article]