|
[n° ou bulletin]
est un bulletin de Remote sensing in ecology and conservation / Zoological Society of London (Royaume-Uni) (2015 -) ![]()
[n° ou bulletin]
|
Dépouillements


Riparian ecosystems mapping at fine scale: a density approach based on multi-temporal UAV photogrammetric point clouds / Elena Belcore in Remote sensing in ecology and conservation, vol 8 n° 5 (October 2022)
![]()
[article]
Titre : Riparian ecosystems mapping at fine scale: a density approach based on multi-temporal UAV photogrammetric point clouds Type de document : Article/Communication Auteurs : Elena Belcore, Auteur ; Melissa Latella, Auteur Année de publication : 2022 Article en page(s) : pp 644 - 655 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte de la végétation
[Termes IGN] densité de la végétation
[Termes IGN] détection d'objet
[Termes IGN] forêt ripicole
[Termes IGN] houppier
[Termes IGN] image captée par drone
[Termes IGN] Italie
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] orthophotoplan numérique
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) In recent years, numerous directives worldwide have addressed the conservation and restoration of riparian corridors, activities that rely on continuous vegetation mapping to understand its volumetric features and health status. Mapping riparian corridors requires not only fine-scale resolution but also the coverage of relatively large areas. The use of Unmanned Aerial Vehicles (UAV) allows for meeting both conditions, although the cost-effectiveness of their use is highly influenced by the type of sensor mounted on them. Few works have so far investigated the use of photogrammetric sensors for individual tree crown detection, despite being cheaper than the most common Light Detection and Ranging (LiDAR) ones. This work aims to improve the individual crown detection from UAV-photogrammetric datasets in a two fold way. Firstly, the effectiveness of a new approach that has already achieved interesting results in LiDAR applications was tested for photogrammetric point clouds. The test was carried out by comparing the accuracy achieved by the new approach, which is based on the point density features of the analysed dataset, with those related to the more common local maxima and textural methods. The results indicated the potentiality of the density-based method, which achieved accuracy values (0.76F-score) consistent with the traditional methods (0.49–0.80F-score range) but was less affected by under- and over-fitting. Secondly, the potential improvement of working on intra-annual multi-temporal datasets was assessed by applying the density-based approach to seven different scenarios, three of which were constituted by single-epoch datasets and the remaining given by the joining of the others. The F-score increased from 0.67 to 0.76 when passing from single- to multi-epoch datasets, aligning with the accuracy achieved by the new method when applied to LiDAR data. The results demonstrate the potential of multi-temporal acquisitions when performing individual crown detection from photogrammetric data. Numéro de notice : A2022-879 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1002/rse2.267 Date de publication en ligne : 22/03/2022 En ligne : https://doi.org/10.1002/rse2.267 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102193
in Remote sensing in ecology and conservation > vol 8 n° 5 (October 2022) . - pp 644 - 655[article]Detecting overmature forests with airborne laser scanning (ALS) / Marc Fuhr in Remote sensing in ecology and conservation, vol 8 n° 5 (October 2022)
![]()
[article]
Titre : Detecting overmature forests with airborne laser scanning (ALS) Type de document : Article/Communication Auteurs : Marc Fuhr, Auteur ; Etienne Lalechère, Auteur ; Jean-Matthieu Monnet, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 731 - 743 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Abies alba
[Termes IGN] âge du peuplement forestier
[Termes IGN] Bootstrap (statistique)
[Termes IGN] canopée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] coefficient de corrélation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Fagus sylvatica
[Termes IGN] Picea abies
[Termes IGN] Préalpes (France)
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) Building a network of interconnected overmature forests is crucial for the conservation of biodiversity. Indeed, a multitude of plant and animal species depend on forest structural maturity attributes such as very large living trees and deadwood. LiDAR technology has proved to be powerful when assessing forest structural parameters, and it may be a promising way to identify existing overmature forest patches over large areas. We first built an index (IMAT) combining several forest structural maturity attributes in order to characterize the structural maturity of 660 field plots in the French northern Pre-Alps. We then selected or developed LiDAR metrics and applied them in a random forest model designed to predict the IMAT. Model performance was evaluated with the root mean square error of prediction obtained from a bootstrap cross-validation and a Spearman correlation coefficient calculated between observed and predicted IMAT. Predictors were ranked by importance based on the average increase in the squared out-of-bag error when the variable was randomly permuted. Despite a non-negligible RMSEP (0.85 for calibration and validation data combined and 1.26 for validation data alone), we obtained a high correlation (0.89) between the observed and predicted IMAT values, indicating an accurate ranking of the field plots. LiDAR metrics for height (maximum height and height heterogeneity) were among the most important metrics for predicting forest maturity, together with elevation, slope and, to a lesser extent, with metrics describing the distribution of echoes' intensities. Our framework makes it possible to reconstruct a forest maturity gradient and isolate maturity hot spots. Nevertheless, our approach could be considerably strengthened by taking into consideration site fertility, collecting other maturity attributes in the field or developing adapted LiDAR metrics. Including additional spectral or textural metrics from optical imagery might also improve the predictive capacity of the model. Numéro de notice : A2022-880 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1002/rse2.274 Date de publication en ligne : 15/07/2022 En ligne : https://doi.org/10.1002/rse2.274 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102197
in Remote sensing in ecology and conservation > vol 8 n° 5 (October 2022) . - pp 731 - 743[article]