Mention de date : January 2023
Paru le : 01/01/2023 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


In-camera IMU angular data for orthophoto projection in underwater photogrammetry / Erica Nocerino in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 7 (January 2023)
![]()
[article]
Titre : In-camera IMU angular data for orthophoto projection in underwater photogrammetry Type de document : Article/Communication Auteurs : Erica Nocerino, Auteur ; Fabio Menna, Auteur Année de publication : 2023 Article en page(s) : n° 100027 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] caméra numérique
[Termes IGN] carte bathymétrique
[Termes IGN] centrale inertielle
[Termes IGN] compensation par faisceaux
[Termes IGN] mesure géodésique
[Termes IGN] orthophotographie
[Termes IGN] photogrammétrie sous-marine
[Termes IGN] positionnement par GNSS
[Termes IGN] redressement différentiel
[Termes IGN] roulis
[Termes IGN] structure-from-motion
[Termes IGN] tangageRésumé : (auteur) Among photogrammetric products, orthophotos are probably the most versatile and widely used in many fields of application. In the last years, coupled with the spread of semi-automated survey and processing approaches based on photogrammetry, orthophotos have become almost a standard for monitoring the underwater environment. If on land the definition of the reference coordinate system and projection plane for the orthophoto generation is trivial, underwater it may represent a challenge. In this paper, we address the issue of defining the vertical direction and resulting horizontal plane (levelling) for the differential ortho rectification. We propose a non-invasive, contactless method based on roll and pitch angular data provided by in-camera IMU sensors and embedded in the Exif metadata of JPEG and raw image files. We show how our approach can be seamlessly integrated into automatic SfM/MVS pipelines, provide the mathematical background, and showcase real-world applications results in an underwater monitoring project. The results illustrate the effectiveness of the proposed method and, for the first time, provide a metric evaluation of the definition of the vertical direction with low-cost sensors enclosed in digital cameras directly underwater. Numéro de notice : A2023-119 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Numéro de périodique DOI : 10.1016/j.ophoto.2022.100027 Date de publication en ligne : 07/12/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100027 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102493
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 7 (January 2023) . - n° 100027[article]Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density / Luyen K. Bui in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 7 (January 2023)
![]()
[article]
Titre : Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density Type de document : Article/Communication Auteurs : Luyen K. Bui, Auteur ; Craig L. Glennie, Auteur Année de publication : 2023 Article en page(s) : n° 100028 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Hawaii (Etats-Unis)
[Termes IGN] incertitude des données
[Termes IGN] interpolation
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Light detection and ranging (lidar) scanning systems can be used to provide a point cloud with high quality and point density. Gridded digital elevation models (DEMs) interpolated from laser scanning point clouds are widely used due to their convenience, however, DEM uncertainty is rarely provided. This paper proposes an end-to-end workflow to quantify the uncertainty (i.e., standard deviation) of a gridded lidar-derived DEM. A benefit of the proposed approach is that it does not require independent validation data measured by alternative means. The input point cloud requires per point uncertainty which is derived from lidar system observational uncertainty. The propagated uncertainty caused by interpolation is then derived by the general law of propagation of variances (GLOPOV) with simultaneous consideration of both horizontal and vertical point cloud uncertainties. Finally, the interpolated uncertainty is then scaled by point density and a measure of terrain roughness to arrive at the final gridded DEM uncertainty. The proposed approach is tested with two lidar datasets measured in Waikoloa, Hawaii, and Sitka, Alaska. Triangulated irregular network (TIN) interpolation is chosen as the representative gridding approach. The results indicate estimated terrain roughness/point density scale factors ranging between 1 (in flat areas) and 7.6 (in high roughness areas), with a mean value of 2.3 for the Waikoloa dataset and between 1 and 9.2 with a mean value of 1.2 for the Sitka dataset. As a result, the final gridded DEM uncertainties are estimated between 0.059 m and 0.677 m with a mean value of 0.164 m for the Waikoloa dataset and between 0.059 m and 1.723 m with a mean value of 0.097 m for the Sitka dataset. Numéro de notice : A2023-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100028 Date de publication en ligne : 17/12/2023 En ligne : https://doi.org/10.1016/j.ophoto.2022.100028 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102494
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 7 (January 2023) . - n° 100028[article]