Navigation : journal of the Institute of navigation / Institute of navigation . vol 70 n° 2Paru le : 01/06/2023 |
[n° ou bulletin]
est un bulletin de Navigation : journal of the Institute of navigation / Institute of navigation (1946 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierOptimized position estimation in mobile multipath environments using machine learning / Nesreen I. Ziedan in Navigation : journal of the Institute of navigation, vol 70 n° 2 (Summer 2023)
[article]
Titre : Optimized position estimation in mobile multipath environments using machine learning Type de document : Article/Communication Auteurs : Nesreen I. Ziedan, Auteur Année de publication : 2023 Article en page(s) : n° 569 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] apprentissage automatique
[Termes IGN] estimation de pose
[Termes IGN] milieu urbain
[Termes IGN] signal GNSS
[Termes IGN] trajet multipleRésumé : (auteur) The positioning accuracy of global navigation satellite system receivers is frequently degraded in urban areas due to reflected signals. A moving receiver faces additional challenges because it needs to adjust to changes in the statuses of the signals received, including line-of-sight (LOS), multipath, non-LOS, or invisible. This paper proposes two new algorithms that can be used to enhance the accuracy of a moving receiver. The first algorithm is called Optimized Position Estimation (OPE). The OPE algorithm estimates the most likely paths and identifies the one with the optimal weight. The second algorithm is called Intelligent Signal Status Estimation (ISE). The ISE algorithm utilizes a self-organizing map machine-learning algorithm to estimate the probability of a change in signal status. The algorithms are tested using global positioning system C/A signals, which have over 50 changes in their statuses. The results obtained using these algorithms reveal that the accuracy is enhanced by as much as 96.3% (i.e., a 27-fold improvement) when compared to results using a conventional navigation algorithm. Numéro de notice : A2023-200 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.33012/navi.569 Date de publication en ligne : 12/09/2022 En ligne : https://doi.org/10.33012/navi.569 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103094
in Navigation : journal of the Institute of navigation > vol 70 n° 2 (Summer 2023) . - n° 569[article]