Paru le : 01/05/2023 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements


Integrating topographic knowledge into point cloud simplification for terrain modelling / Jun Chen in International journal of geographical information science IJGIS, vol 37 n° 5 (May 2023)
![]()
[article]
Titre : Integrating topographic knowledge into point cloud simplification for terrain modelling Type de document : Article/Communication Auteurs : Jun Chen, Auteur ; Liyang Xiong, Auteur ; Bowen Yin, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 988 - 1008 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données topographiques
[Termes IGN] lissage de données
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Terrain models are widely used to depict the shape of the Earth’s surface. With the development of photogrammetric methods, point cloud data have become one of the most popular data sources for terrain modelling. However, the obtained point clouds are of high density, which often increases redundancy rather than improving accuracy. Therefore, point cloud simplification should be a core component of terrain modelling. This paper proposes a point cloud simplification method by integrating topographic knowledge into terrain modelling (TKPCS). The method contains two steps: (1) topographic knowledge recognition and construction and (2) point cloud simplification using this topographic knowledge for terrain modelling. The proposed approach is benchmarked against improved versions of existing methods to validate its capability and accuracy in digital elevation model construction and terrain derivative extraction. The results show that the simplified points of the TKPCS method can generate finer resolution terrain models with higher accuracy and greater information entropy. The good performance of the TKPCS method is also stable at different scales. This work endeavours to transform perceptive topographic knowledge into a process of point cloud simplification and can benefit future research related to terrain modelling. Numéro de notice : A2023-204 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/13658816.2023.2180801 Date de publication en ligne : 28/02/2023 En ligne : https://doi.org/10.1080/13658816.2023.2180801 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103138
in International journal of geographical information science IJGIS > vol 37 n° 5 (May 2023) . - pp 988 - 1008[article]Transform paper-based cadastral data into digital systems using GIS and end-to-end deep learning techniques / Joseph Mango in International journal of geographical information science IJGIS, vol 37 n° 5 (May 2023)
![]()
[article]
Titre : Transform paper-based cadastral data into digital systems using GIS and end-to-end deep learning techniques Type de document : Article/Communication Auteurs : Joseph Mango, Auteur ; Moyang Wang, Auteur ; Senlin Mu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1099 - 1127 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cadastre
[Termes IGN] apprentissage profond
[Termes IGN] données cadastrales
[Termes IGN] numérisation du cadastre
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'information géographiqueRésumé : (auteur) Digital systems storing cadastral data in vector format are considered effective due to their ability of offering interactive services to citizens and other land-related systems. The adoption of such systems is ubiquitous, but when adopted, they create two non-compatible systems with paper-based cadastral systems whose information needs to be digitised. This study proposes a new approach that is fast and accurate for transforming paper-based cadastral data into digital systems. The proposed method involves deep-learning techniques of the LCNN and ResNet-50 for detecting cadastral parcels and their numbers, respectively, from the cadastral plans. It also contains four functions defined to speed up transformations and compilations of the cadastral plan’s data in digital systems. The LCNN is trained and validated with 968 samples. The ResNet-50 is trained and validated with 106,000 samples. The Structural-Average-Precision (sAP10) achieved with the LCNN was 0.9057. The Precision, Recall and F1-Score achieved with the ResNet-50 were 0.9650, 0.9648 and 0.9649, respectively. These results confirmed that the new method is accurate enough for implementation, and we tested it with a huge set of data from Tanzania. Its performance from the experimented data shows that the proposed method could effectively transform paper-based cadastral data into digital systems. Numéro de notice : A2023-212 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2023.2178002 Date de publication en ligne : 22/03/2023 En ligne : https://doi.org/10.1080/13658816.2023.2178002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103139
in International journal of geographical information science IJGIS > vol 37 n° 5 (May 2023) . - pp 1099 - 1127[article]Detecting spatiotemporal propagation patterns of traffic congestion from fine-grained vehicle trajectory data / Haoyi Xiong in International journal of geographical information science IJGIS, vol 37 n° 5 (May 2023)
![]()
[article]
Titre : Detecting spatiotemporal propagation patterns of traffic congestion from fine-grained vehicle trajectory data Type de document : Article/Communication Auteurs : Haoyi Xiong, Auteur ; Xun Zhou, Auteur ; David A. Bennett, Auteur Année de publication : 2023 Article en page(s) : pp 1157-1179 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] détection d'anomalie
[Termes IGN] données spatiotemporelles
[Termes IGN] événement
[Termes IGN] flux
[Termes IGN] gestion de trafic
[Termes IGN] réseau routier
[Termes IGN] trafic routierRésumé : (auteur) Traffic congestion on a road segment typically begins as a small-scale spatiotemporal event that can then propagate throughout a road network and produce large-scale disruptions to a transportation system. In current techniques for the analysis of network flow, data is often aggregated to relatively large (e.g. 5 min) discrete time steps that obscure the small-scale spatiotemporal interactions that drive larger-scale dynamics. We propose a new method that handles fine-grained data to better capture those dynamics. Propagation patterns of traffic congestion are represented as spatiotemporally connected events. Each event is captured as a time series at the temporal resolution of the available trajectory data and at the spatial resolution of the network edge. The spatiotemporal propagation patterns of traffic congestion are captured using Dynamic Time Warping and represented as a set of directed acyclic graphs of spatiotemporal events. Results from this method are compared to an existing method using fine-grained data derived from an agent-based model of traffic simulation. Our method outperforms the existing method. Our method also successfully detects congestion propagation patterns that were reported by media news using sparse real-world data derived from taxis. Numéro de notice : A2023-225 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2023.2178653 Date de publication en ligne : 22/02/2023 En ligne : https://doi.org/10.1080/13658816.2023.2178653 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103177
in International journal of geographical information science IJGIS > vol 37 n° 5 (May 2023) . - pp 1157-1179[article]