| ![]() |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -) ![]()
[n° ou bulletin]
|
Réservation
Réserver ce documentExemplaires (1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-98051 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements


Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications / E.J. Huising in ISPRS Journal of photogrammetry and remote sensing, vol 53 n° 5 (September - October 1998)
![]()
[article]
Titre : Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications Type de document : Article/Communication Auteurs : E.J. Huising, Auteur ; Luisa M. Gomes Pereira, Auteur Année de publication : 1998 Article en page(s) : pp 245 - 261 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Topographie
[Termes IGN] données laser
[Termes IGN] écart type
[Termes IGN] erreur systématique
[Termes IGN] précision du positionnement
[Termes IGN] télémétrie laser aéroportéRésumé : (Auteur) The Survey Department of Rijkswaterstaat in The Netherlands makes extensive use of laser scanning for topographic measurements. An inventory of sources of errors indicates that errors may vary from 5 to 200 cm. The experience shows that errors related to the laser instrument, GPS and INS may frequently occur, resulting in local distortions, and planimetric and height shifts. Moreover, the results indicate that for flat terrain, having corrected for gross errors, an offset of less than 10 cm can often be obtained and standard deviations are generally well within 15 cm. For hilly and flat terrain densely covered by vegetation, accuracy estimates do not generally fulfil those required by Rijkswaterstaat. However, the use of an adequate strategy for data collection and processing will, to a great extent, improve the accuracy and fidelity of the results. Thus, research should be devoted to the design of appropriate strategies for data collection and processing. Copyright ISPRS Numéro de notice : A1998-194 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/S0924-2716(98)00013-6 En ligne : https://doi.org/10.1016/S0924-2716(98)00013-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=26160
in ISPRS Journal of photogrammetry and remote sensing > vol 53 n° 5 (September - October 1998) . - pp 245 - 261[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-98051 SL Revue Centre de documentation Revues en salle Disponible Hierarchical Bayesian nets for building extraction using dense digital surface models / A. Brunn in ISPRS Journal of photogrammetry and remote sensing, vol 53 n° 5 (September - October 1998)
![]()
[article]
Titre : Hierarchical Bayesian nets for building extraction using dense digital surface models Type de document : Article/Communication Auteurs : A. Brunn, Auteur ; U. Weidner, Auteur Année de publication : 1998 Article en page(s) : pp 296 - 307 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] bati
[Termes IGN] extraction automatique
[Termes IGN] modèle numérique de surface
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] réseau bayesienRésumé : (Auteur) During the last years an increasing demand for 3D data of urban scenes can be recognized. Techniques for automatic acquisition of buildings are needed to satisfy this demand in an economic way. This paper describes an approach for building extraction using digital surface models (DSM) as input data. The first task is the detection of areas within the DSM which describe buildings. The second task is the reconstruction of geometric building descriptions. In this paper we focus on new extensions of our approach. The first extension is the detection of buildings using two alternative classification schemes: a binary or a statistical classification based on Bayesian nets, both using local geometric properties. The second extension is the extraction of roof structures as a first step towards the reconstruction of polyhedral building descriptions. Copyright ISPRS Numéro de notice : A1998-195 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/S0924-2716(98)00012-4 En ligne : https://doi.org/10.1016/S0924-2716(98)00012-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=26161
in ISPRS Journal of photogrammetry and remote sensing > vol 53 n° 5 (September - October 1998) . - pp 296 - 307[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-98051 SL Revue Centre de documentation Revues en salle Disponible