Descripteur


Etendre la recherche sur niveau(x) vers le bas
A machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements / Bikram Koirala in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
![]()
[article]
Titre : A machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements Type de document : Article/Communication Auteurs : Bikram Koirala, Auteur ; Zohreh Zahiri, Auteur ; Paul Scheunders, Auteur Année de publication : 2020 Article en page(s) : pp 7393 - 7405 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] biochimie
[Termes descripteurs IGN] diagnostic foliaire
[Termes descripteurs IGN] feuille (végétation)
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] méthode fondée sur le noyau
[Termes descripteurs IGN] processus gaussien
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] teneur en chlorophylle des feuillesRésumé : (auteur) Spectral measurements are commonly applied for the nondestructive estimation of leaf parameters, such as the concentrations of chlorophyll a and b, carotenoid, anthocyanin, brown pigment, leaf water content, and leaf mass per area for the quantification of vegetation physiology. The most popular way to estimate these parameters is by using spectral vegetation indices. The use of biochemical models allows us to use the full wavelength range (400–2500 nm) and to physically interpret the result. However, their performance is usually lower than that of supervised machine learning regression techniques. Machine learning regression techniques, on the other hand, have the disadvantage that the relationship between estimated parameters and the reflectance/transmission spectra is unclear. In this article, a hybrid between a supervised learning method and physical modeling for the estimation of leaf parameters is proposed. In this method, a machine learning regression technique is applied to learn a mapping from the true hyperspectral data set to a data set that follows the PROSPECT model. The PROSPECT model then reveals the actual leaf parameters. Two mapping methods, based on Gaussian processes (GPs) and kernel ridge regression (KRR) are proposed. As an alternative, mapping onto the leaf absorption spectra is proposed as well. The proposed methodology not only estimates the leaf parameters with a lower error but also solves the interpretation problem of the parameters estimated by the advanced machine learning regression techniques. This method is validated on the ANGERS and LOPEX data set. Numéro de notice : A2020-589 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2982263 date de publication en ligne : 02/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2982263 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95919
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 7393 - 7405[article]Spatio-temporal relationship between land cover and land surface temperature in urban areas: A case study in Geneva and Paris / Xu Ge in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
![]()
[article]
Titre : Spatio-temporal relationship between land cover and land surface temperature in urban areas: A case study in Geneva and Paris Type de document : Article/Communication Auteurs : Xu Ge, Auteur ; Dasaraden Mauree, Auteur ; Roberto Castello, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 24 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] espace vert
[Termes descripteurs IGN] Genève
[Termes descripteurs IGN] ilot thermique urbain
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] Normalized Difference Built-up Index
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] Paris (75)
[Termes descripteurs IGN] surface imperméable
[Termes descripteurs IGN] température au sol
[Termes descripteurs IGN] variation saisonnière
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Currently, more than half of the world’s population lives in cities, which leads to major changes in land use and land surface temperature (LST). The associated urban heat island (UHI) effects have multiple impacts on energy consumption and human health. A better understanding of how different land covers affect LST is necessary for mitigating adverse impacts, and supporting urban planning and public health management. This study explores a distance-based, a grid-based and a point-based analysis to investigate the influence of impervious surfaces, green area and waterbodies on LST, from large (distance and grid based analysis with 400 m grids) to smaller (point based analysis with 30 m grids) scale in the two mid-latitude cities of Paris and Geneva. The results at large scale confirm that the highest LST was observed in the city centers. A significantly positive correlation was observed between LST and impervious surface density. An anticorrelation between LST and green area density was observed in Paris. The spatial lag model was used to explore the spatial correlation among LST, NDBI, NDVI and MNDWI on a smaller scale. Inverse correlations between LST and NDVI and MNDWI, respectively, were observed. We conclude that waterbodies display the greatest mitigation on LST and UHI effects both on the large and smaller scale. Green areas play an important role in cooling effects on the smaller scale. An increase of evenly distributed green area and waterbodies in urban areas is suggested to lower LST and mitigate UHI effects. Numéro de notice : A2020-666 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9100593 date de publication en ligne : 10/10/2020 En ligne : https://doi.org/10.3390/ijgi9100593 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96143
in ISPRS International journal of geo-information > vol 9 n° 10 (October 2020) . - 24 p.[article]Uncertainty of forested wetland maps derived from aerial photography / Stephen P. Prisley in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 10 (October 2020)
![]()
[article]
Titre : Uncertainty of forested wetland maps derived from aerial photography Type de document : Article/Communication Auteurs : Stephen P. Prisley, Auteur ; Jeffery A. Turner, Auteur ; Mark J. Brown, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 609 - 617 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] changement d'utilisation du sol
[Termes descripteurs IGN] délimitation
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] Etats-Unis
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] incertitude des données
[Termes descripteurs IGN] inventaire forestier étranger (données)
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] zone humideRésumé : (Auteur) Forested wetlands (FWs) are economically and environmentally important, so monitoring of change is done using remote sensing by several U.S. federal programs. To better understand classification and delineation uncertainties in FW maps, we assessed agreement between National Wetlands Inventory maps based on aerial photography and field determinations at over 16 000 Forest Inventory and Analysis plots. Analyses included evaluation of temporal differences and spatial uncertainty in plot locations and wetland boundaries. User's accuracy for the wetlands map was 90% for FW and 68% for nonforested wetlands. High levels of false negatives were observed, with less than 40% of field-identified wetland plots mapped as such. Epsilon band analysis indicated that if delineation of FW boundaries in the southeastern U.S. met the data quality standards (5 meters), then the area within uncertainty bounds accounts for 15% to 30% of estimated FW area. Numéro de notice : A2020-492 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.10.609 date de publication en ligne : 01/10/2020 En ligne : https://doi.org/10.14358/PERS.86.10.609 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96092
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 10 (October 2020) . - pp 609 - 617[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020101 SL Revue Centre de documentation Revues en salle Disponible Wide-area near-real-time monitoring of tropical forest degradation and deforestation using Sentinel-1 / Dirk Hoekman in Remote sensing, vol 12 n° 19 (October 2020)
![]()
[article]
Titre : Wide-area near-real-time monitoring of tropical forest degradation and deforestation using Sentinel-1 Type de document : Article/Communication Auteurs : Dirk Hoekman, Auteur ; Boris Kooij, Auteur ; Marcela J. Quiñones, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 32 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Amazonie
[Termes descripteurs IGN] Bornéo, île de
[Termes descripteurs IGN] déboisement
[Termes descripteurs IGN] dégradation de l'environnement
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] image radar
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] image TerraSAR-X
[Termes descripteurs IGN] modèle physique
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance forestière
[Termes descripteurs IGN] tourbièreRésumé : (auteur) The use of Sentinel-1 (S1) radar for wide-area, near-real-time (NRT) tropical-forest-change monitoring is discussed, with particular attention to forest degradation and deforestation. Since forest change can relate to processes ranging from high-impact, large-scale conversion to low-impact, selective logging, and can occur in sites having variable topographic and environmental properties such as mountain slopes and wetlands, a single approach is insufficient. The system introduced here combines time-series analysis of small objects identified in S1 data, i.e., segments containing linear features and apparent small-scale disturbances. A physical model is introduced for quantifying the size of small (upper-) canopy gaps. Deforestation detection was evaluated for several forest landscapes in the Amazon and Borneo. Using the default system settings, the false alarm rate (FAR) is very low (less than 1%), and the missed detection rate (MDR) varies between 1.9% ± 1.1% and 18.6% ± 1.0% (90% confidence level). For peatland landscapes, short radar detection delays up to several weeks due to high levels of soil moisture may occur, while, in comparison, for optical systems, detection delays up to 10 months were found due to cloud cover. In peat swamp forests, narrow linear canopy gaps (road and canal systems) could be detected with an overall accuracy of 85.5%, including many gaps barely visible on hi-res SPOT-6/7 images, which were used for validation. Compared to optical data, subtle degradation signals are easier to detect and are not quickly lost over time due to fast re-vegetation. Although it is possible to estimate an effective forest-cover loss, for example, due to selective logging, and results are spatiotemporally consistent with Sentinel-2 and TerraSAR-X reference data, quantitative validation without extensive field data and/or large hi-res radar datasets, such as TerraSAR-X, remains a challenge. Numéro de notice : A2020-633 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs12193263 date de publication en ligne : 08/10/2020 En ligne : https://doi.org/10.3390/rs12193263 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96056
in Remote sensing > vol 12 n° 19 (October 2020) . - 32 p.[article]Use of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed / Qinghu Jiang in Remote sensing, vol 12 n° 18 (September 2020)
![]()
[article]
Titre : Use of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed Type de document : Article/Communication Auteurs : Qinghu Jiang, Auteur ; Yiyun Chen, Auteur ; Jialiang Hu, Auteur ; Feng Liu, Auteur Année de publication : 2020 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] bassin hydrographique
[Termes descripteurs IGN] érosion
[Termes descripteurs IGN] étalonnage de modèle
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image visible
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] sol arable
[Termes descripteurs IGN] spectroscopie
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) This study aimed to assess the ability of using visible and near-infrared reflectance (Vis–NIR) spectroscopy to quantify soil erodibility factor (K) rapidly in an ecologically restored watershed. To achieve this goal, we explored the performance and transferability of the developed spectral models in multiple land-use types: woodland, shrubland, terrace, and slope farmland (the first two types are natural land and the latter two are cultivated land). Subsequently, we developed an improved approach by combining spectral data with related topographic variables (i.e., elevation, watershed location, slope height, and normalized height) to estimate K. The results indicate that the calibrated spectral model using total samples could estimate K factor effectively (R2CV = 0.71, RMSECV = 0.0030 Mg h Mj−1 mm−1, and RPDCV = 1.84). When predicting K in the new samples, models performed well in natural land soils (R2P = 0.74, RPDP = 1.93) but failed in cultivated land soils (R2P = 0.24, RPDP = 0.99). Furthermore, the developed models showed low transferability between the natural and cultivated land datasets. The results also indicate that the combination of spectral data with topographic variables could slightly increase the accuracies of K estimation in total and natural land datasets but did not work for cultivated land samples. This study demonstrated that the Vis–NIR spectroscopy could be used as an effective method in predicting K. However, the predictability and transferability of the calibrated models were land-use type dependent. Our study also revealed that the coupling of spectrum and environmental variable is an effective improvement of K estimation in natural landscape region Numéro de notice : A2020-631 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12183103 date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.3390/rs12183103 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96052
in Remote sensing > vol 12 n° 18 (September 2020) . - 16 p.[article]Analysis of chlorophyll concentration in potato crop by coupling continuous wavelet transform and spectral variable optimization / Ning Liu in Remote sensing, vol 12 n° 17 (September 2020)
PermalinkApplying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
PermalinkArctic tsunamis threaten coastal landscapes and communities – survey of Karrat Isfjord 2017 tsunami effects in Nuugaatsiaq, western Greenland / Mateusz C. Strzelecki in Natural Hazards and Earth System Sciences, vol 20 n° 9 (September 2020)
PermalinkL-band SAR for estimating aboveground biomass of rubber plantation in Java Island, Indonesia / Bambang H Trisasongko in Geocarto international, vol 35 n° 12 ([01/09/2020])
PermalinkComparison of tree-based classification algorithms in mapping burned forest areas / Dilek Kucuk Matci in Geodetski vestnik, vol 64 n° 3 (September - November 2020)
PermalinkDeriving a frozen area fraction from Metop ASCAT backscatter based on Sentinel-1 / Helena Bergstedt in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkEvaluation of crop mapping on fragmented and complex slope farmlands through random forest and object-oriented analysis using unmanned aerial vehicles / Re-Yang Lee in Geocarto international, vol 35 n° 12 ([01/09/2020])
PermalinkMapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine / Aparna R. Phalke in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkMonitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing / Jonathan B. Thayn in Marine geodesy, Vol 43 n° 5 (September 2020)
PermalinkA novel algorithm to estimate phytoplankton carbon concentration in inland lakes using Sentinel-3 OLCI images / Heng Lyu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
Permalink