Descripteur
Documents disponibles dans cette catégorie (831)


Etendre la recherche sur niveau(x) vers le bas
Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from UAV-based digital surface models / Asli Ozdarici-Ok in Geo-spatial Information Science, vol 26 n° inconnu ([01/08/2023])
![]()
[article]
Titre : Automated extraction and validation of Stone Pine (Pinus pinea L.) trees from UAV-based digital surface models Type de document : Article/Communication Auteurs : Asli Ozdarici-Ok, Auteur ; Ali Ozgun Ok, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] Pinus pinea
[Termes IGN] semis de points
[Termes IGN] TurquieRésumé : (auteur) Stone Pine (Pinus pinea L.) is currently the pine species with the highest commercial value with edible seeds. In this respect, this study introduces a new methodology for extracting Stone Pine trees from Digital Surface Models (DSMs) generated through an Unmanned Aerial Vehicle (UAV) mission. We developed a novel enhanced probability map of local maxima that facilitates the computation of the orientation symmetry by means of new probabilistic local minima information. Four test sites are used to evaluate our automated framework within one of the most important Stone Pine forest areas in Antalya, Turkey. A Hand-held Mobile Laser Scanner (HMLS) was utilized to collect the reference point cloud dataset. Our findings confirm that the proposed methodology, which uses a single DSM as an input, secures overall pixel-based and object-based F1-scores of 88.3% and 97.7%, respectively. The overall median Euclidean distance revealed between the automatically extracted stem locations and the manually extracted ones is computed to be 36 cm (less than 4 pixels), demonstrating the effectiveness and robustness of the proposed methodology. Finally, the comparison with the state-of-the-art reveals that the outcomes of the proposed methodology outperform the results of six previous studies in this context. Numéro de notice : A2022-620 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2022.2090864 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1080/10095020.2022.2090864 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101364
in Geo-spatial Information Science > vol 26 n° inconnu [01/08/2023][article]Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning / Iris de Gelis in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
![]()
[article]
Titre : Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning Type de document : Article/Communication Auteurs : Iris de Gelis, Auteur ; Sébastien Lefèvre, Auteur ; Thomas Corpetti, Auteur Année de publication : 2023 Article en page(s) : pp 274 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] modèle numérique de surface
[Termes IGN] réseau neuronal siamois
[Termes IGN] semis de points
[Termes IGN] végétation
[Termes IGN] zone urbaineRésumé : (auteur) This study is concerned with urban change detection and categorization in point clouds. In such situations, objects are mainly characterized by their vertical axis, and the use of native 3D data such as 3D Point Clouds (PCs) is, in general, preferred to rasterized versions because of significant loss of information implied by any rasterization process. Yet, for obvious practical reasons, most existing studies only focus on 2D images for change detection purpose. In this paper, we propose a method capable of performing change detection directly within 3D data. Despite recent deep learning developments in remote sensing, to the best of our knowledge there is no such method to tackle multi-class change segmentation that directly processes raw 3D PCs. Thereby, based on advances in deep learning for change detection in 2D images and for analysis of 3D point clouds, we propose a deep Siamese KPConv network that deals with raw 3D PCs to perform change detection and categorization in a single step. Experimental results are conducted on synthetic and real data of various kinds (LiDAR, multi-sensors). Tests performed on simulated low density LiDAR and multi-sensor datasets show that our proposed method can obtain up to 80% of mean of IoU over classes of changes, leading to an improvement ranging from 10% to 30% over the state-of-the-art. A similar range of improvements is attainable on real data. Then, we show that pre-training Siamese KPConv on simulated PCs allows us to greatly reduce (more than 3,000
) the annotations required on real data. This is a highly significant result to deal with practical scenarios. Finally, an adaptation of Siamese KPConv is realized to deal with change classification at PC scale. Our network overtakes the current state-of-the-art deep learning method by 23% and 15% of mean of IoU when assessed on synthetic and public Change3D datasets, respectively. The code is available at the following link: https://github.com/IdeGelis/torch-points3d-SiameseKPConv.Numéro de notice : A2023-147 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2023.02.001 Date de publication en ligne : 17/02/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.02.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102805
in ISPRS Journal of photogrammetry and remote sensing > vol 197 (March 2023) . - pp 274 - 291[article]Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density / Luyen K. Bui in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 7 (January 2023)
![]()
[article]
Titre : Estimation of lidar-based gridded DEM uncertainty with varying terrain roughness and point density Type de document : Article/Communication Auteurs : Luyen K. Bui, Auteur ; Craig L. Glennie, Auteur Année de publication : 2023 Article en page(s) : n° 100028 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Hawaii (Etats-Unis)
[Termes IGN] incertitude des données
[Termes IGN] interpolation
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Light detection and ranging (lidar) scanning systems can be used to provide a point cloud with high quality and point density. Gridded digital elevation models (DEMs) interpolated from laser scanning point clouds are widely used due to their convenience, however, DEM uncertainty is rarely provided. This paper proposes an end-to-end workflow to quantify the uncertainty (i.e., standard deviation) of a gridded lidar-derived DEM. A benefit of the proposed approach is that it does not require independent validation data measured by alternative means. The input point cloud requires per point uncertainty which is derived from lidar system observational uncertainty. The propagated uncertainty caused by interpolation is then derived by the general law of propagation of variances (GLOPOV) with simultaneous consideration of both horizontal and vertical point cloud uncertainties. Finally, the interpolated uncertainty is then scaled by point density and a measure of terrain roughness to arrive at the final gridded DEM uncertainty. The proposed approach is tested with two lidar datasets measured in Waikoloa, Hawaii, and Sitka, Alaska. Triangulated irregular network (TIN) interpolation is chosen as the representative gridding approach. The results indicate estimated terrain roughness/point density scale factors ranging between 1 (in flat areas) and 7.6 (in high roughness areas), with a mean value of 2.3 for the Waikoloa dataset and between 1 and 9.2 with a mean value of 1.2 for the Sitka dataset. As a result, the final gridded DEM uncertainties are estimated between 0.059 m and 0.677 m with a mean value of 0.164 m for the Waikoloa dataset and between 0.059 m and 1.723 m with a mean value of 0.097 m for the Sitka dataset. Numéro de notice : A2023-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100028 Date de publication en ligne : 17/12/2023 En ligne : https://doi.org/10.1016/j.ophoto.2022.100028 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102494
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 7 (January 2023) . - n° 100028[article]Exploring the addition of airborne Lidar-DEM and derived TPI for urban land cover and land use classification and mapping / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 1 (January 2023)
![]()
[article]
Titre : Exploring the addition of airborne Lidar-DEM and derived TPI for urban land cover and land use classification and mapping Type de document : Article/Communication Auteurs : Clement E. Akumu, Auteur ; Sam Dennis, Auteur Année de publication : 2023 Article en page(s) : pp19 - 26 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte d'occupation du sol
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données topographiques
[Termes IGN] image Landsat-OLI
[Termes IGN] milieu urbain
[Termes IGN] MNS lidar
[Termes IGN] semis de points
[Termes IGN] Tennessee (Etats-Unis)
[Termes IGN] utilisation du solRésumé : (auteur) The classification and mapping accuracy of urban land cover and land use has always been a critical topic and several auxiliary data have been used to improve the classification accuracy. However, to the best of our knowledge, there is limited knowledge of the addition of airborne Light Detection and Ranging (lidar)-Digital Elevation Model (DEM) and Topographic Position Index (TPI) for urban land cover and land use classification and mapping. The aim of this study was to explore the addition of airborne lidar-DEM and derived TPI to reflect data of Landsat Operational Land Imager (OLI) in improving the classification accuracy of urban land cover and land use map- ping. Specifically, this study explored the mapping accuracies of urban land cover and land use classifications derived using: 1) standalone Landsat OLI satellite data; 2) Landsat OLI with acquired airborne lidar-DEM ; 3) Landsat OLI with TPI ; and 4) Landsat OLI with airborne lidar-DEM and derived TPI. The results showed that the addition of airborne lidar-DEM and TPI yielded the best overall urban land cover and land use classification accuracy of about 88%. The findings in this study demonstrated that both lidar-DEM and TPI had a positive impact in improving urban land cover and land use classification. Numéro de notice : A2023-045 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00029R2 Date de publication en ligne : 01/01/2023 En ligne : https://doi.org/10.14358/PERS.21-00029R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102354
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 1 (January 2023) . - pp19 - 26[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2023011 SL Revue Centre de documentation Revues en salle Disponible How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)
![]()
[article]
Titre : How to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data Type de document : Article/Communication Auteurs : Rongfang Lyu, Auteur ; Jili Pang, Auteur ; Xiaolei Tian, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104287 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace vert
[Termes IGN] hauteur du bâti
[Termes IGN] ilot thermique urbain
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] Leaf Area Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] optimisation (mathématiques)
[Termes IGN] paysage urbain
[Termes IGN] plan d'eau
[Termes IGN] planification urbaine
[Termes IGN] réseau bayesien
[Termes IGN] semis de points
[Termes IGN] température au solRésumé : (auteur) The systematical exploration of how two-dimensional (2D) and three-dimensional (3D) features of urban landscapes influence land surface temperature (LST) is still limited. Therefore, we investigated the influence of three main urban landscapes—urban green space, impervious land, and water bodies on LST, with a particular focus on the 3D vegetation metrics of green volume (GV) and leaf area index (LAI). We used Yinchuan City, China, as a case study. We quantified the impacts of various 2D/3D metrics of the three landscape types on LST using a random forest analysis with multiple sources, including Unmanned Aerial Vehicle (UAV) and remote sensing images. We then generated a Bayesian Network (BN) model to identify the optimal configurations for each landscape type. We found that using 11 of the 31 metrics considered, our model could explain 81.8% of the observed variance in LST of Yinchuan City. Among those, water body metrics were the most important, followed by vegetation abundance, impervious land metrics, and landscape pattern of urban green space. The mean classification error of the BN model was only 22.9%. We suggest that this makes the BN model a promising support tool for urban planning with a view to urban heat island mitigation. Our findings also stress the importance of considering both 2D and 3D features when considering urban cooling strategies. Numéro de notice : A2023-007 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.104287 Date de publication en ligne : 02/11/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104287 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102095
in Sustainable Cities and Society > vol 88 (January 2023) . - n° 104287[article]Improving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography / Ihor Kozak in Urban Forestry & Urban Greening, vol 79 (January 2023)
PermalinkMulti-information PointNet++ fusion method for DEM construction from airborne LiDAR data / Hong Hu in Geocarto international, vol 38 n° 1 ([01/01/2023])
PermalinkDes relevés sur mesure pour la sentinelle des Pyrénées / Marielle Mayo in Géomètre, n° 2209 (janvier 2023)
PermalinkTree position estimation from TLS data using hough transform and robust least-squares circle fitting / Maja Michałowska in Remote Sensing Applications: Society and Environment, RSASE, vol 29 (January 2023)
PermalinkAbove ground biomass estimation from UAV high resolution RGB images and LiDAR data in a pine forest in Southern Italy / Mauro Maesano in iForest, biogeosciences and forestry, vol 15 n° 6 (December 2022)
PermalinkDecadal surface changes and displacements in Switzerland / Valentin Tertius Bickel in Journal of Geovisualization and Spatial Analysis, vol 6 n° 2 (December 2022)
PermalinkPermalinkA semi-automatic method for extraction of urban features by integrating aerial images and LIDAR data and comparing its performance in areas with different feature structures (case study: comparison of the method performance in Isfahan and Toronto) / Masoud Azad in Applied geomatics, vol 14 n° 4 (December 2022)
PermalinkGCPs-free photogrammetry for estimating tree height and crown diameter in Arizona cypress plantation using UAV-mounted GNSS RTK / Morteza Pourreza in Forests, vol 13 n° 11 (November 2022)
PermalinkModelling forest volume with small area estimation of forest inventory using GEDI footprints as auxiliary information / Shaohui Zhang in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
Permalink