Descripteur
Documents disponibles dans cette catégorie (2888)


Etendre la recherche sur niveau(x) vers le bas
Deep learning method for Chinese multisource point of interest matching / Pengpeng Li in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : Deep learning method for Chinese multisource point of interest matching Type de document : Article/Communication Auteurs : Pengpeng Li, Auteur ; Jiping Liu, Auteur ; An Luo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage profond
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] inférence sémantique
[Termes IGN] information sémantique
[Termes IGN] point d'intérêt
[Termes IGN] représentation vectorielle
[Termes IGN] traitement du langage naturelRésumé : (auteur) Multisource point of interest (POI) matching refers to the pairing of POIs that refer to the same geographic entity in different data sources. This also constitutes the core issue in geospatial data fusion and update. The existing methods cannot effectively capture the complex semantic information from a text, and the manually defined rules largely affect matching results. This study developed a multisource POI matching method based on deep learning that transforms the POI pair matching problem into a binary classification problem. First, we used three different Chinese word segmentation methods to segment the POI text attributes and used the segmentation results to train the Word2Vec model to generate the corresponding word vector representation. Then, we used the text convolutional neural network (Text-CNN) and multilayer perceptron (MLP) to extract the POI attributes' features and generate the corresponding feature vector representation. Finally, we used the enhanced sequential inference model (ESIM) to perform local inference and inference combination on each attribute to realize the classification of POI pairs. We used the POI dataset containing Baidu Map, Tencent Map, and Gaode Map from Chengdu to train, verify, and test the model. The experimental results show that the matching precision, recall rate, and F1 score of the proposed method exceed 98% on the test set, and it is significantly better than the existing matching methods. Numéro de notice : A2022-513 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101821 Date de publication en ligne : 18/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101053
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101821[article]Experiencing virtual geographic environment in urban 3D participatory e-planning: A user perspective / Thibaud Chassin in Landscape and Urban Planning, vol 224 (August 2022)
![]()
[article]
Titre : Experiencing virtual geographic environment in urban 3D participatory e-planning: A user perspective Type de document : Article/Communication Auteurs : Thibaud Chassin, Auteur ; Jens Ingensand, Auteur ; Sidonie Christophe , Auteur ; Guillaume Touya
, Auteur
Année de publication : 2022 Projets : 3-projet - voir note / Article en page(s) : n° 104432 Note générale : bibliographie
This study was partly funded by the Computers & Geosciences Research Scholarships co-sponsored by Elsevier and the International Association for Mathematical Geosciences (IAMG).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] approche participative
[Termes IGN] cognition
[Termes IGN] environnement géographique virtuel
[Termes IGN] projet urbain
[Termes IGN] urbanisme
[Termes IGN] utilisateur
[Termes IGN] visualisation 3DRésumé : (auteur) The adoption of technology in urban participatory planning with tools such as Virtual Geographic Environments (VGE) promises a broader engagement of urban dwellers, which should ultimately lead to the creation of better cities. However, the authorities and urban experts show hesitancy in endorsing these tools in their practices. Indeed, several parameters must be wisely considered in the design of VGE; if misjudged, their impact could be damaging for the participatory approach and the related urban project. The objective of this study is to engage participants (N = 107) with common tasks conducted in participatory sessions, in order to evaluate the users’ performance when manipulating a VGE. We aimed at assessing three crucial parameters: (1) the VGE representation, (2) the participants’ idiosyncrasies, and (3) the nature of the VGE format. The results demonstrate that the parameters did not affect the same aspect of users’ performance in terms of time, inputs, and correctness. The VGE representation impacts only the time needed to fulfill a task. The participants’ idiosyncrasies, namely age, gender and frequency of 3D use also induce an alteration in time, but spatial abilities seem to impact all characteristics of users’ performance, including correctness. Lastly, the nature of the VGE format significantly alters the time and correctness of users interactions. The results of this study highlight concerns about the inadequacies of the current VGE practices in participatory sessions. Moreover, we suggest guidelines to improve the design of VGE, which could enhance urban participatory planning processes, in order to create better cities. Numéro de notice : A2022-439 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.landurbplan.2022.104432 Date de publication en ligne : 18/04/2022 En ligne : https://doi.org/10.1016/j.landurbplan.2022.104432 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100758
in Landscape and Urban Planning > vol 224 (August 2022) . - n° 104432[article]Production of optimum forest roads and comparison of these routes with current forest roads: a case study in Maçka, Turkey / Faruk Yildirim in Geocarto international, vol 37 n° 8 ([22/06/2022])
![]()
[article]
Titre : Production of optimum forest roads and comparison of these routes with current forest roads: a case study in Maçka, Turkey Type de document : Article/Communication Auteurs : Faruk Yildirim, Auteur ; Fatih Kadi, Auteur Année de publication : 2022 Article en page(s) : pp 2175 - 2197 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte forestière
[Termes IGN] forêt
[Termes IGN] interface graphique
[Termes IGN] Matlab
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] recherche du chemin optimal, algorithme de
[Termes IGN] route
[Termes IGN] TurquieRésumé : (auteur) Forest roads are a basic necessity in forestry policies and should be planned by considering many factors. This study aims to generate optimum forest road routes and to compare them with current forest roads. First, FRNSM has been produced according to AHP, using nine factors for the study area. Then, risk statuses of the current forest roads are examined. According to results, 35% of the total forest road has high risk. A MATLAB-GUI based an application using optimal path algorithm developed for the second stage of the study has been produced. Using this application, optimum forest road routes have been produced for 11 pilot areas selected from the region. Generated routes have been compared with current forest roads in the region. It has been observed that generated routes in all areas are more suitable than current forest roads in terms of total length and average risk of suitability. Numéro de notice : A2022-504 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1818852 Date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.1080/10106049.2020.1818852 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101025
in Geocarto international > vol 37 n° 8 [22/06/2022] . - pp 2175 - 2197[article]3D modeling method for dome structure using digital geological map and DEM / Xian-Yu Liu in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
![]()
[article]
Titre : 3D modeling method for dome structure using digital geological map and DEM Type de document : Article/Communication Auteurs : Xian-Yu Liu, Auteur ; An-Bo Li, Auteur ; Hao Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 339 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] carte géologique
[Termes IGN] carte stratigraphique
[Termes IGN] courbe de Bézier
[Termes IGN] modèle géologique
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation 3D
[Termes IGN] structure géologiqueRésumé : (auteur) Geological maps have wide coverage with low acquisition difficulty. When other geological survey data are scarce, they are a valuable source of geological structure information for geological modeling. However, for structures with large deformation, geological map information has difficulty meeting the requirement of its 3D geological modeling. Therefore, this paper takes the dome structure as an example to explore a 3D modeling method based on geological maps, DEM and related geological knowledge. The method includes: (1) adaptively calculating the attitude of points on the stratigraphic boundaries; (2) inferring and generating the bottom boundary of the model from the attitude data of the boundary points; (3) generating the model interface constrained by Bézier curves based on the bottom boundary; (4) generating the top and bottom surfaces of the stratum; and (5) stitching each surface of the geological body to generate the final dome model. Case studies of the dome in Wulongshan in China and the Richat structure in Mauritania show that this method can build a solid model of the dome based only on geological maps and DEM data, whose morphological features are basically consistent with those embodied in the section view or the model generated by traditional methods. Numéro de notice : A2022-482 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3390/ijgi11060339 Date de publication en ligne : 07/06/2022 En ligne : https://doi.org/10.3390/ijgi11060339 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100895
in ISPRS International journal of geo-information > vol 11 n° 6 (June 2022) . - n° 339[article]Detecting spatiotemporal traffic events using geosocial media data / Shishuo Xu in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Detecting spatiotemporal traffic events using geosocial media data Type de document : Article/Communication Auteurs : Shishuo Xu, Auteur ; Songnian Li, Auteur ; Wei Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101797 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] base de données d'objets mobiles
[Termes IGN] base de données spatiotemporelles
[Termes IGN] détection d'événement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] planification urbaine
[Termes IGN] sécurité routière
[Termes IGN] Toronto
[Termes IGN] trafic routier
[Termes IGN] TwitterRésumé : (auteur) Social media platforms enable efficient traffic event detection by allowing users to produce geo-tagged content (e.g., tweets) known as geosocial media data. Geosocial media data improve road safety by providing timely updates for traffic flow and traffic control. Recent studies on traffic event detection with geosocial media data have been focused around keyword-based query approaches, where the event content was inferred by predetermined categories, to retrieve relevant traffic events. Spatiotemporal features associated with traffic-related posts have not been fully investigated. In this study, we filtered irrelevant posts with association rules. A spatiotemporal clustering-based method was then used to retrieve traffic events from these filtered posts, where the content of detected events was automatically inferred with a set of representative terms. For comparison, a typical text classification-based method was also used by classifying the posts filtered from association rules into different categories. By validating the detection results with vehicle travel speed data, we demonstrate that the former outperforms the latter in terms of the number of correctly detected traffic events from one-year of Twitter data in Toronto, Canada. Our proposed approach helps organizations and governments to be aware of when and where traffic events occur by identifying event hotspots and peak periods, which improves both traffic management and urban planning. Numéro de notice : A2022-264 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101797 Date de publication en ligne : 26/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101797 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100261
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101797[article]Efficient calculation of distance transform on discrete global grid systems / Meysam Kazemi in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
PermalinkMulti-objective optimization of urban environmental system design using machine learning / Peiyuan Li in Computers, Environment and Urban Systems, vol 94 (June 2022)
PermalinkTowards the automated large-scale reconstruction of past road networks from historical maps / Johannes H. Uhl in Computers, Environment and Urban Systems, vol 94 (June 2022)
PermalinkExploring digital twin adaptation to the urban environment: comparison with CIM to avoid silo-based approaches / Adeline Deprêtre in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2022 (2022 edition)
PermalinkMulti-resolution representation using graph database / Yizhi Huang in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2022 (2022 edition)
Permalink3D building model simplification method considering both model mesh and building structure / Jiangfeng She in Transactions in GIS, vol 26 n° 3 (May 2022)
PermalinkCompleteness assessment and improvement in mobile crowd-sensing environments / Souheir Mehanna in SN Computer Science, vol 3 n° 3 (May 2022)
PermalinkDeveloping a data-fusing method for mapping fine-scale urban three-dimensional building structure / Xinxin Wu in Sustainable Cities and Society, vol 80 (May 2022)
PermalinkGIS-KG: building a large-scale hierarchical knowledge graph for geographic information science / Jiaxin Du in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
PermalinkHiPerMovelets: high-performance movelet extraction for trajectory classification / Tarlis Tortelli Portela in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
Permalink