Descripteur
Documents disponibles dans cette catégorie (692)


Etendre la recherche sur niveau(x) vers le bas
Narrative cartography with knowledge graphs / Gengchen Mai in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)
![]()
[article]
Titre : Narrative cartography with knowledge graphs Type de document : Article/Communication Auteurs : Gengchen Mai, Auteur ; Weiming Huang, Auteur ; Ling Cai, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] ArcGIS
[Termes IGN] cartographie ancienne
[Termes IGN] cartographie par internet
[Termes IGN] données spatiotemporelles
[Termes IGN] géovisualisation
[Termes IGN] modèle d'ontologie
[Termes IGN] ontologie
[Termes IGN] réseau sémantique
[Termes IGN] SPARQL
[Termes IGN] système d'information géographique
[Termes IGN] web sémantiqueRésumé : (auteur) Narrative cartography is a discipline which studies the interwoven nature of stories and maps. However, conventional geovisualization techniques of narratives often encounter several prominent challenges, including the data acquisition & integration challenge and the semantic challenge. To tackle these challenges, in this paper, we propose the idea of narrative cartography with knowledge graphs (KGs). Firstly, to tackle the data acquisition & integration challenge, we develop a set of KG-based GeoEnrichment toolboxes to allow users to search and retrieve relevant data from integrated cross-domain knowledge graphs for narrative mapping from within a GISystem. With the help of this tool, the retrieved data from KGs are directly materialized in a GIS format which is ready for spatial analysis and mapping. Two use cases — Magellan’s expedition and World War II — are presented to show the effectiveness of this approach. In the meantime, several limitations are identified from this approach, such as data incompleteness, semantic incompatibility, and the semantic challenge in geovisualization. For the later two limitations, we propose a modular ontology for narrative cartography, which formalizes both the map content (Map Content Module) and the geovisualization process (Cartography Module). We demonstrate that, by representing both the map content and the geovisualization process in KGs (an ontology), we can realize both data reusability and map reproducibility for narrative cartography. Numéro de notice : A2022-182 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s41651-021-00097-4 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1007/s41651-021-00097-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99869
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 1 (June 2022)[article]The effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events / Sidgley Camargo de Andrade in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
![]()
[article]
Titre : The effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events Type de document : Article/Communication Auteurs : Sidgley Camargo de Andrade, Auteur ; João Porto de Albuquerque, Auteur ; Camilo Restrepo-Estrada, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1140 - 1165 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] auto-régression
[Termes IGN] distribution spatiale
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données socio-économiques
[Termes IGN] hétérogénéité spatiale
[Termes IGN] mobilité urbaine
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] pluie
[Termes IGN] précipitation
[Termes IGN] Sao Paulo
[Termes IGN] TwitterRésumé : (auteur) Although it is acknowledged that urban inequalities can lead to biases in the production of social media data, there is a lack of studies which make an assessment of the effects of intra-urban movements in real-world urban analytics applications, based on social media. This study investigates the spatial heterogeneity of social media with regard to the regular intra-urban movements of residents by means of a case study of rainfall-related Twitter activity in São Paulo, Brazil. We apply a spatial autoregressive model that uses population and income as covariates and intra-urban mobility flows as spatial weights to explain the spatial distribution of the social response to rainfall events in Twitter vis-à-vis rainfall radar data. Results show high spatial heterogeneity in the response of social media to rainfall events, which is linked to intra-urban inequalities. Our model performance (R2=0.80) provides evidence that urban mobility flows and socio-economic indicators are significant factors to explain the spatial heterogeneity of thematic spatiotemporal patterns extracted from social media. Therefore, urban analytics research and practice should consider not only the influence of socio-economic profile of neighborhoods but also the spatial interaction introduced by intra-urban mobility flows to account for spatial heterogeneity when using social media data. Numéro de notice : A2022-405 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1957898 Date de publication en ligne : 03/08/2021 En ligne : https://doi.org/10.1080/13658816.2021.1957898 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100717
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1140 - 1165[article]ChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network / Qinjun Qiu in Transactions in GIS, vol 26 n° 3 (May 2022)
![]()
[article]
Titre : ChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Shu Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1256 - 1279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] échantillonnage de données
[Termes IGN] OpenStreetMap
[Termes IGN] reconnaissance automatique
[Termes IGN] répertoire toponymique
[Termes IGN] site wiki
[Termes IGN] toponymeRésumé : (auteur) Toponym recognition is used to extract toponyms from natural language texts, which is a fundamental task of ubiquitous geographic information applications. Existing toponym recognition methods with state-of-the-art performance mainly leverage supervised learning (i.e., deep-learning-based approaches) with parameters learned from massive, labeled datasets that must be annotated manually. This is a great inconvenience when model training needs to fit different domain texts, especially those of social media messaging. To address this issue, this article proposes a weakly supervised Chinese toponym recognition (ChineseTR) architecture that leverages a training dataset creator that generates training datasets automatically based on word collections and associated word frequencies from various texts and an extension recognizer that employs a basic bidirectional recurrent neural network based on particular features designed for toponym recognition. The results show that the proposed ChineseTR achieves a 0.76 F1 score in a corpus with a 0.718 out-of-vocabulary rate and a 0.903 in-vocabulary rate. All comparative experiments demonstrate that ChineseTR is an effective and scalable architecture that recognizes toponyms. Numéro de notice : A2022-462 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12902 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1111/tgis.12902 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100796
in Transactions in GIS > vol 26 n° 3 (May 2022) . - pp 1256 - 1279[article]A GIS representation framework for location-based social media activities / Xuebin Wei in Transactions in GIS, vol 26 n° 3 (May 2022)
![]()
[article]
Titre : A GIS representation framework for location-based social media activities Type de document : Article/Communication Auteurs : Xuebin Wei, Auteur ; Xiaobai Yao, Auteur Année de publication : 2022 Article en page(s) : pp 1444 - 1464 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] cadre conceptuel
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] environnement géographique virtuel
[Termes IGN] Facebook
[Termes IGN] modèle conceptuel de données spatio-temporelles
[Termes IGN] ontologie
[Termes IGN] relations sociales
[Termes IGN] représentation des données
[Termes IGN] réseau social géodépendant
[Termes IGN] système d'information géographique
[Termes IGN] Time-geographyRésumé : (auteur) The past couple of decades have witnessed tremendous growth of location-based social media activities (LBSMA) data in virtual spaces, including virtual geographic environments. Such data become innovative resources for the analysis of human activities. Meanwhile, a shift of human interactions from geographical spaces to virtual spaces has been observed. Although this is an exciting research opportunity, it also imposes significant challenges on GIScience, as current GIS representation models are no longer sufficient to handle the increased sophistication of human activities data. This research formalizes an ontology for LBSMA data and a conceptual framework for representing such data in GIS. The framework contributes to GIScience as it enables interconnections of human activities in both the physical and virtual worlds to be represented, organized, retrieved, analyzed, and visualized. The proposed GIS representation model integrates a social dimension into the existing spatial–temporal representation models and allows data analysis in the spatial–temporal–social (STS) dimensions. The research tested this conceptual framework with a prototype and a case study using Facebook data. The prototype and the case study prove that the proposed framework can significantly enhance GIS capabilities for data organization, retrieval, and analysis of LBSMA data in STS dimensions. Numéro de notice : A2022-477 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article DOI : 10.1111/tgis.12929 Date de publication en ligne : 02/05/2022 En ligne : https://doi.org/10.1111/tgis.12929 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100825
in Transactions in GIS > vol 26 n° 3 (May 2022) . - pp 1444 - 1464[article]Enriching the metadata of map images: a deep learning approach with GIS-based data augmentation / Yingjie Hu in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
![]()
[article]
Titre : Enriching the metadata of map images: a deep learning approach with GIS-based data augmentation Type de document : Article/Communication Auteurs : Yingjie Hu, Auteur ; Zhipeng Gui, Auteur ; Jimin Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 799 - 821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] descripteur
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] image cartographique
[Termes IGN] métadonnées
[Termes IGN] projection
[Termes IGN] système d'information géographique
[Termes IGN] Web Map Service
[Termes IGN] web mappingRésumé : (auteur) Maps in the form of digital images are widely available in geoportals, Web pages, and other data sources. The metadata of map images, such as spatial extents and place names, are critical for their indexing and searching. However, many map images have either mismatched metadata or no metadata at all. Recent developments in deep learning offer new possibilities for enriching the metadata of map images via image-based information extraction. One major challenge of using deep learning models is that they often require large amounts of training data that have to be manually labeled. To address this challenge, this paper presents a deep learning approach with GIS-based data augmentation that can automatically generate labeled training map images from shapefiles using GIS operations. We utilize such an approach to enrich the metadata of map images by adding spatial extents and place names extracted from map images. We evaluate this GIS-based data augmentation approach by using it to train multiple deep learning models and testing them on two different datasets: a Web Map Service image dataset at the continental scale and an online map image dataset at the state scale. We then discuss the advantages and limitations of the proposed approach. Numéro de notice : A2022-258 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/13658816.2021.1968407 En ligne : https://doi.org/10.1080/13658816.2021.1968407 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100231
in International journal of geographical information science IJGIS > vol 36 n° 4 (April 2022) . - pp 799 - 821[article]Spatially oriented convolutional neural network for spatial relation extraction from natural language texts / Qinjun Qiu in Transactions in GIS, vol 26 n° 2 (April 2022)
PermalinkVolunteered geographic information mobile application for participatory landslide inventory mapping / Raden Muhammad Anshori in Computers & geosciences, vol 161 (April 2022)
PermalinkModular multi-dimensional tool for emergency evacuation including location-based social network data / Ilil Blum Shem-Tov in Journal of location-based services, vol 16 n° 1 (March 2022)
PermalinkSculpting, cutting, expanding, and contracting the map / Nick Lally in Cartographica, Vol 57 n° 1 (Spring)
PermalinkDiscovering transition patterns among OpenStreetMap feature classes based on the Louvain method / Yijiang Zhao in Transactions in GIS, vol 26 n° 1 (February 2022)
PermalinkA survey on semantic question answering systems / Christina Antoniou in The Knowledge Engineering Review, vol 37 (2022)
PermalinkAn approach for multi-scale urban building data integration and enrichment through geometric matching and semantic web / Abdulkadir Memduhoglu in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
PermalinkAnnotation sémantique pour la géolocalisation d'entités spatiales dans des tweets / Gaëtan Caillaut (2022)
PermalinkAutomated construction of a French Entity Linking dataset to geolocate social network posts in the context of natural disasters / Gaëtan Caillaut (2022)
PermalinkCIME: Context-aware geolocation of emergency-related posts / Gabriele Scalia in Geoinformatica [en ligne], vol 26 n° 1 (January 2022)
Permalink