Descripteur



Etendre la recherche sur niveau(x) vers le bas
SemCity Toulouse: a benchmark for building instance segmentation in satellite images / Ribana Roscher in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-5 (August 2020)
![]()
[article]
Titre : SemCity Toulouse: a benchmark for building instance segmentation in satellite images Type de document : Article/Communication Auteurs : Ribana Roscher, Auteur ; Michele Volpi, Auteur ; Clément Mallet , Auteur ; Lukas Drees, Auteur ; Jan Dirk Wegner, Auteur
Année de publication : 2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 5, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 5 Article en page(s) : pp 109 - 116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] bati
[Termes descripteurs IGN] données d'apprentissage
[Termes descripteurs IGN] instance
[Termes descripteurs IGN] Toulouse
[Termes descripteurs IGN] zone urbaine denseRésumé : (auteur) In order to reach the goal of reliably solving Earth monitoring tasks, automated and efficient machine learning methods are necessary for large-scale scene analysis and interpretation. A typical bottleneck of supervised learning approaches is the availability of accurate (manually) labeled training data, which is particularly important to train state-of-the-art (deep) learning methods. We present SemCity Toulouse, a publicly available, very high resolution, multi-spectral benchmark data set for training and evaluation of sophisticated machine learning models. The benchmark acts as test bed for single building instance segmentation which has been rarely considered before in densely built urban areas. Additional information is provided in the form of a multi-class semantic segmentation annotation covering the same area plus an adjacent area 3 times larger. The data set addresses interested researchers from various communities such as photogrammetry and remote sensing, but also computer vision and machine learning. Numéro de notice : A2020-503 Affiliation des auteurs : LaSTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-5-2020-109-2020 date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-5-2020-109-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95639
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > V-5 (August 2020) . - pp 109 - 116[article]GeoNat v1.0: A dataset for natural feature mapping with artificial intelligence and supervised learning / Samantha T. Arundel in Transactions in GIS, Vol 24 n° 3 (June 2020)
![]()
[article]
Titre : GeoNat v1.0: A dataset for natural feature mapping with artificial intelligence and supervised learning Type de document : Article/Communication Auteurs : Samantha T. Arundel, Auteur ; Wenwen Li, Auteur ; Sizhe Wang, Auteur Année de publication : 2020 Article en page(s) : pp 556 - 572 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] cartographie topographique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] collecte de données
[Termes descripteurs IGN] détection automatique
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] géoétiquetage
[Termes descripteurs IGN] toponyme
[Termes descripteurs IGN] United States Geological SurveyRésumé : (Auteur) Machine learning allows “the machine” to deduce the complex and sometimes unrecognized rules governing spatial systems, particularly topographic mapping, by exposing it to the end product. Often, the obstacle to this approach is the acquisition of many good and labeled training examples of the desired result. Such is the case with most types of natural features. To address such limitations, this research introduces GeoNat v1.0, a natural feature dataset, used to support artificial intelligence‐based mapping and automated detection of natural features under a supervised learning paradigm. The dataset was created by randomly selecting points from the U.S. Geological Survey’s Geographic Names Information System and includes approximately 200 examples each of 10 classes of natural features. Resulting data were tested in an object‐detection problem using a region‐based convolutional neural network. The object‐detection tests resulted in a 62% mean average precision as baseline results. Major challenges in developing training data in the geospatial domain, such as scale and geographical representativeness, are addressed in this article. We hope that the resulting dataset will be useful for a variety of applications and shed light on training data collection and labeling in the geospatial artificial intelligence domain. Numéro de notice : A2020-245 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12633 date de publication en ligne : 08/05/2020 En ligne : https://doi.org/10.1111/tgis.12633 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95307
in Transactions in GIS > Vol 24 n° 3 (June 2020) . - pp 556 - 572[article]Advances in Intelligent Data Analysis XVIII : 18th International Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April 27–29 2020 / Michael R. Berthold (2020)
![]()
Titre : Advances in Intelligent Data Analysis XVIII : 18th International Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April 27–29 2020 Type de document : Actes de congrès Auteurs : Michael R. Berthold, Editeur scientifique ; Ad Feelders, Editeur scientifique ; Georg Krempl, Editeur scientifique Editeur : Berlin, Heidelberg, Vienne, New York, ... : Springer Année de publication : 2020 Collection : Lecture notes in Computer Science, ISSN 0302-9743 num. 12080 Importance : 588 p. ISBN/ISSN/EAN : 978-3-030-44584-3 Note générale : Information Systems and Applications, incl. Internet/Web, and HCI Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes descripteurs IGN] analyse d'image numérique
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] corrélation d'images
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] vision par ordinateurRésumé : (Editeur) This open access book constitutes the proceedings of the 18th International Conference on Intelligent Data Analysis, IDA 2020, held in Konstanz, Germany, in April 2020. The 45 full papers presented in this volume were carefully reviewed and selected from 114 submissions. Advancing Intelligent Data Analysis requires novel, potentially game-changing ideas. IDA’s mission is to promote ideas over performance: a solid motivation can be as convincing as exhaustive empirical evaluation. Numéro de notice : 26312 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Actes DOI : 10.1007/978-3-030-44584-3 date de publication en ligne : 14/05/2020 En ligne : https://www.springer.com/gp/book/9783030445836 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95127 Comparing supervised learning algorithms for Spatial Nominal Entity recognition / Amine Medad (2020)
![]()
Titre : Comparing supervised learning algorithms for Spatial Nominal Entity recognition Type de document : Article/Communication Auteurs : Amine Medad, Auteur ; Mauro Gaio, Auteur ; Ludovic Moncla, Auteur ; Sébastien Mustière , Auteur ; Yannick Le Nir, Auteur
Editeur : Göttingen : Copernicus publications Année de publication : 2020 Collection : AGILE GIScience Series num. vol 1 Projets : 1-Pas de projet / Conférence : AGILE 2020, 23rd AGILE Conference on Geographic Information Science 16/06/2020 19/06/2020 Chania - Crète Grèce Open Access Proceedings Importance : 18 p. Format : 21 x 30 cm Note générale : biblographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes descripteurs IGN] algorithme d'apprentissage
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] entité géographique
[Termes descripteurs IGN] recherche d'information géographique
[Termes descripteurs IGN] reconnaissance de noms
[Termes descripteurs IGN] traitement du langage naturelRésumé : (auteur) Discourse may contain both named and nominal entities. Most common nouns or nominal mentions in natural language do not have a single, simple meaning but rather a number of related meanings. This form of ambiguity led to the development of a task in natural language processing known as Word Sense Disambiguation. Recognition and categorisation of named and nominal entities is an essential step for Word Sense Disambiguation methods. Up to now, named entity recognition and categorisation systems mainly focused on the annotation, categorisation and identification of named entities. This paper focuses on the annotation and the identification of spatial nominal entities. We explore the combination of Transfer Learning principle and supervised learning algorithms, in order to build a system to detect spatial nominal entities. For this purpose, different supervised learning algorithms are evaluated with three different context sizes on two manually annotated datasets built from Wikipedia articles and hiking description texts. The studied algorithms have been selected for one or more of their specific properties potentially useful in solving our problem. The results of the first phase of experiments reveal that the selected algorithms have similar performances in terms of ability to detect spatial nominal entities. The study also confirms the importance of the size of the window to describe the context, when word-embedding principle is used to represent the semantics of each word. Numéro de notice : C2020-013 Affiliation des auteurs : LaSTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/agile-giss-1-15-2020 date de publication en ligne : 15/07/2020 En ligne : https://doi.org/10.5194/agile-giss-1-15-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95688 Nonparametric Bayesian learning for collaborative robot multimodal introspection / Xuefeng Zhou · (2020)
![]()
Titre : Nonparametric Bayesian learning for collaborative robot multimodal introspection Type de document : Monographie Auteurs : Xuefeng Zhou ·, Auteur ; Hongmin Wu, Auteur ; Juan Rojas, Auteur ; et al., Auteur Editeur : Springer Nature Année de publication : 2020 Importance : 137 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-981-1562631-- Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] Hidden Markov Model (HMM)
[Termes descripteurs IGN] inférence
[Termes descripteurs IGN] interface homme-machine
[Termes descripteurs IGN] modèle mathématique
[Termes descripteurs IGN] problème de Dirichlet
[Termes descripteurs IGN] robotiqueRésumé : (éditeur) This open access book focuses on robot introspection, which has a direct impact on physical human–robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods. This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students. Note de contenu : 1- Introduction to robot introspection
2- Nonparametric Bayesian modeling of multimodal time series
3- Incremental learning robot task representation and identification
4- Nonparametric Bayesian method for robot anomaly monitoring
5- Nonparametric Bayesian method for robot anomaly diagnose
6- Learning policy for robot anomaly recovery based on robot introspectionNuméro de notice : 25965 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/MATHEMATIQUE Nature : Monographie DOI : 10.1007%2F978-981-15-6263-1 En ligne : https://link.springer.com/book/10.1007%2F978-981-15-6263-1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96557 PermalinkPermalinkValidating the correct wearing of protection mask by taking a selfie: design of a mobile application "CheckYourMask" to limit the spread of COVID-19 / Karim Hammoudi (2020)
PermalinkPermalinkEstimation de profondeur à partir d'images monoculaires par apprentissage profond / Michel Moukari (2019)
PermalinkPermalinkHyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing / Minrui Zheng in International journal of geographical information science IJGIS, Vol 33 n° 1-2 (January - February 2019)
PermalinkMachine learning techniques applied to geoscience information system and remote sensing / Saro Lee (2019)
PermalinkProjection sur l’évolution de la distribution future de la population en utilisant du Machine Learning et de la géosimulation / Julie Grosmaire (2019)
PermalinkPermalink