Descripteur
Documents disponibles dans cette catégorie (1512)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Vehicle detection of multi-source remote sensing data using active fine-tuning network / Xin Wu in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
[article]
Titre : Vehicle detection of multi-source remote sensing data using active fine-tuning network Type de document : Article/Communication Auteurs : Xin Wu, Auteur ; Wei Li, Auteur ; Danfeng Hong, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 39 - 53 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] Allemagne
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données multisources
[Termes IGN] image aérienne
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stéréoscopique
[Termes IGN] segmentation
[Termes IGN] segmentation sémantique
[Termes IGN] véhiculeRésumé : (auteur) Vehicle detection in remote sensing images has attracted increasing interest in recent years. However, its detection ability is limited due to lack of well-annotated samples, especially in densely crowded scenes. Furthermore, since a list of remotely sensed data sources is available, efficient exploitation of useful information from multi-source data for better vehicle detection is challenging. To solve the above issues, a multi-source active fine-tuning vehicle detection (Ms-AFt) framework is proposed, which integrates transfer learning, segmentation, and active classification into a unified framework for auto-labeling and detection. The proposed Ms-AFt employs a fine-tuning network to firstly generate a vehicle training set from an unlabeled dataset. To cope with the diversity of vehicle categories, a multi-source based segmentation branch is then designed to construct additional candidate object sets. The separation of high quality vehicles is realized by a designed attentive classifications network. Finally, all three branches are combined to achieve vehicle detection. Extensive experimental results conducted on two open ISPRS benchmark datasets, namely the Vaihingen village and Potsdam city datasets, demonstrate the superiority and effectiveness of the proposed Ms-AFt for vehicle detection. In addition, the generalization ability of Ms-AFt in dense remote sensing scenes is further verified on stereo aerial imagery of a large camping site. Numéro de notice : A2020-546 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.06.016 Date de publication en ligne : 13/07/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.06.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95772
in ISPRS Journal of photogrammetry and remote sensing > vol 167 (September 2020) . - pp 39 - 53[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020091 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020093 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Towards structureless bundle adjustment with two- and three-view structure approximation / Ewelina Rupnik in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
[article]
Titre : Towards structureless bundle adjustment with two- and three-view structure approximation Type de document : Article/Communication Auteurs : Ewelina Rupnik , Auteur ; Marc Pierrot-Deseilligny , Auteur Année de publication : 2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Article en page(s) : pp 71 - 78 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] approximation
[Termes IGN] compensation par faisceaux
[Termes IGN] estimation de pose
[Termes IGN] structure-from-motionRésumé : (auteur) The global approaches solve SfM problems by independently inferring relative motions, followed be a sequential estimation of global rotations and translations. It is a fast approach but not optimal because it relies only on pairs and triplets of images and it is not a joint optimisation. In this publication we present a methodology that increases the quality of global solutions without the usual computational burden tied to the bundle adjustment. We propose an efficient structure approximation approach that relies on relative motions known upfront. Using the approximated structure, we are capable of refining the initial poses at very low computational cost. Compared to different benchmark datasets and software solutions, our approach improves the processing times while maintaining good accuracy. Numéro de notice : A2020-505 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-71-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-71-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95646
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2020 (August 2020) . - pp 71 - 78[article]A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations / Laure Chandelier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)
[article]
Titre : A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations Type de document : Article/Communication Auteurs : Laure Chandelier , Auteur ; Laurent Coeurdevey, Auteur ; Sébastien Bosch, Auteur ; Pascal Favé, Auteur ; Roland Gachet, Auteur ; Alain Orsoni , Auteur ; Thomas Tilak , Auteur ; Alexis Barot, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Article en page(s) : pp 15 - 23 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] base de données d'images
[Termes IGN] compensation par bloc
[Termes IGN] données localisées de référence
[Termes IGN] formatage
[Termes IGN] image à très haute résolution
[Termes IGN] image multi sources
[Termes IGN] image satellite
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] image SPOT-HRS
[Termes IGN] informatique en nuage
[Termes IGN] Institut national de l'information géographique et forestière (France)
[Termes IGN] point d'appui
[Termes IGN] spatiotriangulationRésumé : (auteur) High location accuracy is a major requirement for satellite image users. Target performance is usually achieved thanks to either specific on-board satellite equipment or an auxiliary registration reference dataset. Both methods may be expensive and with certain limitations in terms of performance. The Institut national de l’information géographique et forestière (IGN) and Airbus Defence and Space (ADS) have worked together for almost 20 years, to build reference data for improving image location using multi-satellite observations. The first geometric foundation created has mainly used SPOT 5 High Resolution Stereoscopic (HRS) imagery, ancillary Ground Control Points (GCP) and Very High Resolution (VHR) imagery, providing a homogenous location accuracy of 10m CE90 almost all over the world in 2010. Space Reference Points (SRP) is a new worldwide 3D GCP database, built from a plethoric SPOT 6/7 multi-view archive, largely automatically processed, with cloud-based technologies. SRP aims at providing a systematic and reliable solution for image location (Unmanned Aerial Vehicle, VHR satellite imagery, High Altitudes Pseudo-Satellite…) and similar topics thanks to a high-density point distribution with a 3m CE90 accuracy. This paper describes the principle of SRP generation and presents the first validation results. A SPOT 6/7 smart image selection is performed to keep only relevant images for SRP purpose. The location of these SPOT 6/7 images is refined thanks to a spatiotriangulation on the worldwide geometric foundation, itself improved where needed. Points making up the future SRP database are afterward extracted thanks to classical feature detection algorithms and with respect to the expected density. Different filtering methods are applied to keep the best candidates. The last step of the processing chain is the formatting of the data to the delivery format, including metadata. An example of validation of SRP concept and specification on two tests sites (Spain and China) is then given. As a conclusion, the on-going production is shortly presented. Numéro de notice : A2020-474 Affiliation des auteurs : IGN+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-15-2020 Date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-15-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95613
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2020 (August 2020) . - pp 15 - 23[article]A hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery / Mehdi Khoshboresh Masouleh in Applied geomatics, vol 12 n° 2 (June 2020)
[article]
Titre : A hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery Type de document : Article/Communication Auteurs : Mehdi Khoshboresh Masouleh, Auteur ; Reza Shah-Hosseini, Auteur Année de publication : 2020 Article en page(s) : pp 107 - 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction automatique
[Termes IGN] gestion de trafic
[Termes IGN] image à haute résolution
[Termes IGN] image aérienne
[Termes IGN] modèle orienté objet
[Termes IGN] orthophotographie
[Termes IGN] segmentation sémantique
[Termes IGN] trafic routier
[Termes IGN] véhicule automobileRésumé : (auteur) Automatic car extraction (ACE) from high-resolution airborne imagery (i.e., true-orthophoto) has been a hot research topic in the field of photogrammetry and machine learning. ACE from high-resolution airborne imagery is the most suitable method for control and monitoring practices in large cities such as traffic management. The use of deep learning–based feature extraction methods, such as convolutional neural networks, have been providing state-of-the-art performance in the last few years, particularly, these techniques have been successfully applied to automatic object extraction from images. In this paper, we proposed a novel hybrid method to take advantage of the semantic segmentation of high-resolution airborne imagery to ACE that is realized based on the combination of deep convolutional neural networks and restricted Boltzmann machine (RBM). This hybrid method is called RBMDeepNet. We trained and tested our model on the ISPRS Potsdam and Vaihingen benchmark datasets (non-big data) which is more challenging for ACE. Here, Potsdam data is a true-color dataset, and Vaihingen data is a false-color dataset. The results obtained in the present study showed that the proposed method for ACE from high-resolution airborne imagery achieves a 7% improvement in accuracy with about 10% improvement in processing time compared to similar methods. Numéro de notice : A2020-558 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12518-019-00285-4 Date de publication en ligne : 06/08/2019 En ligne : https://doi.org/10.1007/s12518-019-00285-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95868
in Applied geomatics > vol 12 n° 2 (June 2020) . - pp 107 - 119[article]An integrated approach to registration and fusion of hyperspectral and multispectral images / Yuan Zhou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : An integrated approach to registration and fusion of hyperspectral and multispectral images Type de document : Article/Communication Auteurs : Yuan Zhou, Auteur ; Anand Rangarajan, Auteur ; Paul D. Gader, Auteur Année de publication : 2020 Article en page(s) : pp 3020 - 3033 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] algorithme de fusion
[Termes IGN] distorsion d'image
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] méthode des moindres carrés
[Termes IGN] points registration
[Termes IGN] tâche image d'un pointRésumé : (auteur) Combining a hyperspectral (HS) image and a multispectral (MS) image—an example of image fusion—can result in a spatially and spectrally high-resolution image. Despite the plethora of fusion algorithms in remote sensing, a necessary prerequisite, namely registration, is mostly ignored. This limits their application to well-registered images from the same source. In this article, we propose and validate an integrated registration and fusion approach (code available at https://github.com/zhouyuanzxcv/Hyperspectral ). The registration algorithm minimizes a least-squares (LSQ) objective function with the point spread function (PSF) incorporated together with a nonrigid freeform transformation applied to the HS image and a rigid transformation applied to the MS image. It can handle images with significant scale differences and spatial distortion. The fusion algorithm takes the full high-resolution HS image as an unknown in the objective function. Assuming that the pixels lie on a low-dimensional manifold invariant to local linear transformations from spectral degradation, the fusion optimization problem leads to a closed-form solution. The method was validated on the Pavia University, Salton Sea, and the Mississippi Gulfport datasets. When the proposed registration algorithm is compared to its rigid variant and two mutual information-based methods, it has the best accuracy for both the nonrigid simulated dataset and the real dataset, with an average error less than 0.15 pixels for nonrigid distortion of maximum 1 HS pixel. When the fusion algorithm is compared with current state-of-the-art algorithms, it has the best performance on images with registration errors as well as on simulations that do not consider registration effects. Numéro de notice : A2020-231 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2941494 Date de publication en ligne : 12/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2941494 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94969
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3020 - 3033[article]Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks / Mahmoud Saeedimoghaddam in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)PermalinkAutomated terrain feature identification from remote sensing imagery: a deep learning approach / Wenwen Li in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)PermalinkWavelet and non-parametric statistical based approach for long term land cover trend analysis using time series EVI data / Niraj Priyadarshi in Geocarto international, vol 35 n° 5 ([01/04/2020])PermalinkDeep learning for geometric and semantic tasks in photogrammetry and remote sensing / Christian Helpke in Geo-spatial Information Science, vol 23 n° 1 (March 2020)PermalinkEdge-reinforced convolutional neural network for road detection in very-high-resolution remote sensing imagery / Xiaoyan Lu in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)PermalinkHeuristic sample learning for complex urban scenes: Application to urban functional-zone mapping with VHR images and POI data / Xiuyuan Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)PermalinkPoststack seismic data denoising based on 3-D convolutional neural network / Dawei Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)PermalinkSimultaneous intensity bias estimation and stripe noise removal in infrared images using the global and local sparsity constraints / Li Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)PermalinkThe application of bidirectional reflectance distribution function data to recognize the spatial heterogeneity of mixed pixels in vegetation remote sensing: a simulation study / Yanan Yan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)PermalinkSome thoughts on measuring earthquake deformation using optical imagery / Min Huang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)Permalink