Descripteur


Etendre la recherche sur niveau(x) vers le bas
sing data usinAutomatic atmospheric correction for shortwave hyperspectral remote seng a time-dependent deep neural network / Jian Sun in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : sing data usinAutomatic atmospheric correction for shortwave hyperspectral remote seng a time-dependent deep neural network Type de document : Article/Communication Auteurs : Jian Sun, Auteur ; Fangcao Xu, Auteur ; Guido Cervone, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 117 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] détection de cible
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] modèle de transfert radiatif
[Termes descripteurs IGN] rayonnement solaire
[Termes descripteurs IGN] réflectivitéRésumé : (auteur) Atmospheric correction is an essential step in hyperspectral imaging and target detection from spectrometer remote sensing data. State-of-the-art atmospheric correction approaches either require extensive filed experiments or prior knowledge of atmospheric characteristics to improve the predicted accuracy, which are computational expensive and unsuitable for real time application. To take full advantages of remote sensing observation in quickly and reliably acquiring data for a large area, an automatic and efficient processing tool is required for atmospheric correction. In this paper, we propose a time-dependent neural network for automatic atmospheric correction and target detection using multi-scan hyperspectral data under different elevation angles. In addition to the total radiance, the collection day and time are also incorporated to improve the time-dependency of the network and represent the seasonal and diurnal characteristics of atmosphere and solar radiation. Results show that the proposed network has the capacity to accurately provide atmospheric characteristics and estimate precise reflectivity spectra with 95,72% averaged accuracy for different materials, including vegetation, sea ice, and ocean. Additional experiments are designed to investigate the network’s temporal dependency and performance on missing data. The error analysis confirms that our proposed network is capable of estimating atmospheric characteristics under both seasonally and diurnally varying environments and handling the influence of missing data. Both the predicted results and error analysis are promising and demonstrate that our network has the ability of providing accurate atmospheric correction and target detection in real time. Numéro de notice : A2021-208 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.007 date de publication en ligne : 24/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97186
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 117 - 131[article]Detection of subpixel targets on hyperspectral remote sensing imagery based on background endmember extraction / Xiaorui Song in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
![]()
[article]
Titre : Detection of subpixel targets on hyperspectral remote sensing imagery based on background endmember extraction Type de document : Article/Communication Auteurs : Xiaorui Song, Auteur ; Ling Zou, Auteur ; Lingda Wu, Auteur Année de publication : 2021 Article en page(s) : pp 2365 - 2377 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] algorithme d'extraction
[Termes descripteurs IGN] détection de cible
[Termes descripteurs IGN] données d'apprentissage
[Termes descripteurs IGN] image à basse résolution
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] méthode robuste
[Termes descripteurs IGN] précision infrapixellaireRésumé : (Auteur) The low spatial resolution associated with imaging spectrometers has caused subpixel target detection to become a special problem in hyperspectral image (HSI) processing that poses considerable challenges. In subpixel target detection, the size of the target is smaller than that of a pixel, making the spatial information of the target almost useless so that a detection algorithm must rely on the spectral information of the image. To address this problem, this article proposes a subpixel target detection algorithm for hyperspectral remote sensing imagery based on background endmember extraction. First, we propose a background endmember extraction algorithm based on robust nonnegative dictionary learning to obtain the background endmember spectrum of the image. Next, we construct a hyperspectral subpixel target detector based on pixel reconstruction (HSPRD) to perform pixel-by-pixel target detection on the image to be tested using the background endmember spectral matrix and the spectra of known ground targets. Finally, the subpixel target detection results are obtained. The experimental results show that, compared with other existing subpixel target detection methods, the algorithm proposed here can provide the optimum target detection results for both synthetic and real-world data sets. Numéro de notice : A2021-217 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1109/TGRS.2020.3002461 date de publication en ligne : 24/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3002461 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97209
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2365 - 2377[article]Impact of atmospheric correction on spatial heterogeneity relations between land surface temperature and biophysical compositions / Xin-Ming Zhu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
![]()
[article]
Titre : Impact of atmospheric correction on spatial heterogeneity relations between land surface temperature and biophysical compositions Type de document : Article/Communication Auteurs : Xin-Ming Zhu, Auteur ; Xiao-Ning Song, Auteur ; Pei Leng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2680 - 2697 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] température au sol
[Termes descripteurs IGN] variable biophysique (végétation)Résumé : (Auteur) Investigating the relations between land surface temperature (LST) and biophysical compositions can help the understanding of the surface biophysical process. However, there are still uncertainties in determining the impacts of biophysical compositions on LST due to the atmospheric effects. In this article, four atmospheric correction algorithms were used to correct 12 Landsat 8 images in Xi’an, Beijing, Wuhan, and Guangzhou, China, including the Atmospheric Correction for Flat Terrain (ATCOR2), Quick Atmospheric Correction (QUAC), Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH), and Second Simulation of Satellite Signal in the Solar Spectrum (6S). Then, geodetector was used to investigate the atmospheric correction differences in the spatial heterogeneity relationships between LST and normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and bare soil index (BSI). Results indicate that the selected composition factors were greatly improved after atmospheric correction, and the relations between LST and three factors were characterized by obvious atmospheric correction differences in four study areas. On the whole, the 6S algorithm performed the best in improving the factor values and impacting the spatial heterogeneity relations between LST and biophysical compositions, followed by FLAASH, QUAC, and ATCOR2 algorithms. Except for Wuhan, 6S, FLAASH, and QUAC algorithms significantly enhanced the correlation between LST and NDVI. However, all algorithms weakened the correlations between LST, NDVI, and BSI, except Guangzhou. These findings have been verified using the regression analysis. In addition, with geodetector, combinations of any two composition factors all had strongly enhanced impacts on LST, and a combination between NDVI and NDBI performed the strongest in most cases. Numéro de notice : A2021-219 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3002821 date de publication en ligne : 26/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3002821 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97211
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2680 - 2697[article]Learning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery / Ju Zhang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
![]()
[article]
Titre : Learning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery Type de document : Article/Communication Auteurs : Ju Zhang, Auteur ; Qingwu Hu, Auteur ; Jiayuan Li, Auteur ; Mingyao Ai, Auteur Année de publication : 2021 Article en page(s) : pp 1836 - 1847 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données GPS
[Termes descripteurs IGN] extraction du réseau routier
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] rastérisation
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] trajectoire
[Termes descripteurs IGN] Wuhan (Chine)
[Termes descripteurs IGN] zone urbaineRésumé : (Auteur) Deep learning has achieved great success in recent years, among which the convolutional neural network (CNN) method is outstanding in image segmentation and image recognition. It is also widely used in satellite imagery road extraction and, generally, can obtain accurate and extraction results. However, at present, the extraction of roads based on CNN still requires a lot of manual preparation work, and a large number of samples can be marked to achieve extraction, which has to take long drawing cycle and high production cost. In this article, a new CNN sample set production method is proposed, which uses the GPS trajectories of floating car as training set (GPSTasST), for the multilevel urban roads extraction from high-resolution remote sensing imagery. This method rasterizes the GPS trajectories of floating car into a raster map and uses the processed raster map to label the satellite image to obtain a road extraction sample set. CNN can extract roads from remote sensing imagery by learning the training set. The results show that the method achieves a harmonic mean of precision and recall higher than road extraction method from single data source while eliminating the manual labeling work, which shows the effectiveness of this work. Numéro de notice : A2021-211 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3003425 date de publication en ligne : 14/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3003425 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97196
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 1836 - 1847[article]A novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm / Sara Khanbani in Applied geomatics, vol 13 n° 1 (March 2021)
[article]
Titre : A novel unsupervised change detection method from remotely sensed imagery based on an improved thresholding algorithm Type de document : Article/Communication Auteurs : Sara Khanbani, Auteur ; Ali Mohammadzadeh, Auteur ; Milad Janalipour, Auteur Année de publication : 2021 Article en page(s) : pp 89 - 105 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] algorithme génétique
[Termes descripteurs IGN] changement temporel
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par nuées dynamiques
[Termes descripteurs IGN] coût
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] seuillageRésumé : (auteur) Change Detection (CD) problem from remotely sensed images is a popular topic among researchers. Because of the diversity in the problem of change detection and the complexity of the study areas it cannot be claimed that there is an appropriate and prevalent algorithm which is more effective for different types of the case study. As a fundamental investigation, it is critical to recognize the weaknesses of the state of artworks in change detection. Also, those examined weaknesses have to be improved aptly to develop a new strong method. This paper presents a thresholding algorithm improved by the Genetic Algorithm (GA) in CD problems, which focuses on minimizing a novel cost function. The suggested cost function can be adopted for local and global change variations in difference images without any prior assumptions. The presented algorithm was tested on two data sets (i.e., Alaska region and Uremia Lake) to validate its effectiveness. Experimental results demonstrated that the proposed algorithm in this work has improved the accuracy of change detection (changed pixel accuracy term) in the Alaska region about 8%–12% and also in Uremia Lake approximately between 8%–13% in comparison with other conventional methods including Fuzzy C- Means (FCM), Otsu thresholding, K-Means, and K-Medoid. Numéro de notice : A2021-237 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97246
in Applied geomatics > vol 13 n° 1 (March 2021) . - pp 89 - 105[article]Pan-sharpening via multiscale dynamic convolutional neural network / Jianwen Hu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkActivity recognition in residential spaces with Internet of things devices and thermal imaging / Kshirasagar Naik in Sensors, vol 21 n° 3 (February 2021)
PermalinkCorrentropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing / Xiaorun Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkDeep traffic light detection by overlaying synthetic context on arbitrary natural images / Jean Pablo Vieira de Mello in Computers and graphics, vol 94 n° 1 (February 2021)
PermalinkFully convolutional neural network for impervious surface segmentation in mixed urban environment / Joseph McGlinchy in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
PermalinkGTP-PNet: A residual learning network based on gradient transformation prior for pansharpening / Hao Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkSemi-supervised joint learning for hand gesture recognition from a single color image / Chi Xu in Sensors, vol 21 n° 3 (February 2021)
PermalinkAleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis / Max Mehltretter in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkAn improved approach based on terrain-dependent mathematical models for georeferencing pushbroom satellite images / Behrooz Moradi in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
PermalinkDynamic committee machine with fuzzy-c-means clustering for total organic carbon content prediction from wireline logs / Yang Bai in Computers & geosciences, vol 146 (January 2021)
Permalink