Descripteur


Etendre la recherche sur niveau(x) vers le bas
Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection / Chandi Witharana in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
![]()
[article]
Titre : Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection Type de document : Article/Communication Auteurs : Chandi Witharana, Auteur ; Md Abul Ehsan Bhuiyan, Auteur ; Anna K. Liljedahl, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 174-191 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] algorithme de fusion
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] Arctique
[Termes descripteurs IGN] artefact
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection automatique
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] glace
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] pergélisol
[Termes descripteurs IGN] texture d'imageRésumé : (Auteur) The utility of sheer volumes of very high spatial resolution (VHSR) commercial imagery in mapping the Arctic region is new and actively evolving. Commercial satellite sensors typically record image data in low-resolution multispectral (MS) and high-resolution panchromatic (PAN) mode. Spatial resolution is needed to accurately describe feature shapes and textural patterns, such as ice-wedge polygons (IWPs) that are rapidly transforming surface features due to degrading permafrost, while spectral resolution allows capturing of land-use and land-cover types. Data fusion, the process of combining PAN and MS images with complementary characteristics often serves as an integral component of remote sensing mapping workflows. The fusion process generates spectral and spatial artifacts that may affect the classification accuracies of subsequent automated image analysis algorithms, such as deep learning (DL) convolutional neural nets (CNN). We employed a detailed multidimensional assessment to understand the performances of an array of eight application-oriented data fusion algorithms when applied to VHSR image scenes for DLCNN-based mapping of ice-wedge polygons. Our findings revealed the scene dependency of data fusion algorithms and emphasized the need for careful selection of the proper algorithm. Results suggested that the fusion algorithms that preserve spatial character of original PAN imagery favor the DLCNN model performances. The choice of fusion approach needs to be considered of equal importance to the required training dataset for successful applications using DLCNN on VHRS imagery in order to enable an accurate mapping effort of permafrost thaw across the Arctic region. Numéro de notice : A2020-705 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.010 date de publication en ligne : 01/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.010 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96232
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 174-191[article]Unsupervised deep joint segmentation of multitemporal high-resolution images / Sudipan Saha in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
![]()
[article]
Titre : Unsupervised deep joint segmentation of multitemporal high-resolution images Type de document : Article/Communication Auteurs : Sudipan Saha, Auteur ; Lichao Mou, Auteur ; Chunping Qiu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 8780 - 8792 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] extraction de données
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] segmentation sémantiqueRésumé : (auteur) High/very-high-resolution (HR/VHR) multitemporal images are important in remote sensing to monitor the dynamics of the Earth’s surface. Unsupervised object-based image analysis provides an effective solution to analyze such images. Image semantic segmentation assigns pixel labels from meaningful object groups and has been extensively studied in the context of single-image analysis, however not explored for multitemporal one. In this article, we propose to extend supervised semantic segmentation to the unsupervised joint semantic segmentation of multitemporal images. We propose a novel method that processes multitemporal images by separately feeding to a deep network comprising of trainable convolutional layers. The training process does not involve any external label, and segmentation labels are obtained from the argmax classification of the final layer. A novel loss function is used to detect object segments from individual images as well as establish a correspondence between distinct multitemporal segments. Multitemporal semantic labels and weights of the trainable layers are jointly optimized in iterations. We tested the method on three different HR/VHR data sets from Munich, Paris, and Trento, which shows the method to be effective. We further extended the proposed joint segmentation method for change detection (CD) and tested on a VHR multisensor data set from Trento. Numéro de notice : A2020-744 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2990640 date de publication en ligne : 11/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2990640 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96375
in IEEE Transactions on geoscience and remote sensing > Vol 58 n° 12 (December 2020) . - pp 8780 - 8792[article]Forêt d'arbres aléatoires et classification d'images satellites : relation entre la précision du modèle d'entraînement et la précision globale de la classification / Aurélien N.G. Matsaguim in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
![]()
[article]
Titre : Forêt d'arbres aléatoires et classification d'images satellites : relation entre la précision du modèle d'entraînement et la précision globale de la classification Type de document : Article/Communication Auteurs : Aurélien N.G. Matsaguim, Auteur ; Emmanuel D. Tiomo, Auteur Année de publication : 2020 Article en page(s) : pp 3 - 14 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] arbre de décision
[Termes descripteurs IGN] base d'apprentissage
[Termes descripteurs IGN] Cameroun
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] corrélation d'images
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] qualité d'imageRésumé : (Auteur) En télédétection, il existe un grand nombre d'algorithmes permettant de classifier une image satellite. Parmi ces algorithmes de classification, la Forêt d'Arbres Aléatoires apparait comme particulièrement performant. Cette étude a pour objectifs d'évaluer (1) l'importance de la sélection des images pour le niveau de précision du modèle d'entrainement et (2) la nature de la relation qui existe entre le niveau de précision du modèle et celui de la précision globale de la carte thématique résultant de la classification de l'image satellite avec cet algorithme de classification. A partir d'une image Landsat 8 OLI prise au-dessus d'une zone de montagne tropicale : la région de l'Ouest Cameroun, 35 modèles ont été construits et testés. Les résultats montrent que le niveau de la précision globale des résultats de la Forêts d'Arbres Aléatoires est étroitement dépendant d'une part de la précision du modèle d'entrainement utilisé pour classifier l'image satellite, et d'autre part du choix des images utilisées pour entrainer ce modèle. De plus, la sélection de ces images est elle-même dépendante de la qualité des zones d'entrainement qui servirontà la construction du modèle. Il est donc important de mettre en accent particulier sur la qualité des données d'entrée afin de garantir des résultats satisfaisants avec cet algorithme. Mots clés : Forêt d’Arbres Aléatoires ; précision ; modèle d’entrainement ; télédétection ; Cameroun Numéro de notice : A2020-760 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans date de publication en ligne : 25/11/2020 En ligne : http://www.sfpt.fr/rfpt/index.php/RFPT/article/view/477/251 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96400
in Revue Française de Photogrammétrie et de Télédétection > n° 222 (novembre 2020) . - pp 3 - 14[article]Bayesian transfer learning for object detection in optical remote sensing images / Changsheng Zhou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
![]()
[article]
Titre : Bayesian transfer learning for object detection in optical remote sensing images Type de document : Article/Communication Auteurs : Changsheng Zhou, Auteur ; Jiangshe Zhang, Auteur ; Junmin Liu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7705 - 7719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] chaîne de traitement
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] distribution de Fisher
[Termes descripteurs IGN] jeu de données localisées
[Termes descripteurs IGN] théorème de BayesRésumé : (auteur) In the literature of object detection in optical remote sensing images, a popular pipeline is first modifying an off-the-shelf deep neural network, then initializing the modified network by pretrained weights on a source data set, and finally fine-tuning the network on a target data set. The procedure works well in practice but might not make full use of underlying knowledge implied by pretrained weights. In this article, we propose a novel method, referred to as Fisher regularization, for efficient knowledge transferring. Based on Bayes’ theorem, the method stores underlying knowledge into a Fisher information matrix and fine-tunes parameters based on the knowledge. The proposed method would not introduce extra parameters and is less sensitive to hyperparameters than classical weight decay. Experiments on NWPUVHR-10 and DOTA data sets show that the proposed method is effective and works well with different object detectors. Numéro de notice : A2020-679 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2983201 date de publication en ligne : 14/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2983201 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96182
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7705 - 7719[article]A fractal projection and Markovian segmentation-based approach for multimodal change detection / Max Mignotte in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
![]()
[article]
Titre : A fractal projection and Markovian segmentation-based approach for multimodal change detection Type de document : Article/Communication Auteurs : Max Mignotte, Auteur Année de publication : 2020 Article en page(s) : pp 8046 - 8058 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] champ aléatoire de Markov
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] décomposition d'image
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] géométrie fractale
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] projection
[Termes descripteurs IGN] segmentation d'imageRésumé : (auteur) Change detection in heterogeneous bitemporal satellite images has become an emerging, important, and challenging research topic in remote sensing for rapid damage assessment. In this article, we explore a new parametric mapping strategy based on a modified geometric fractal decomposition and a contractive mapping approach allowing us to project the before image on any after imaging modality type. This projection exploits the fact that any satellite image data can be approximatively encoded in terms of spatial self-similarities at different scales and this property remains quite invariant to a given imaging modality type. Once the projection is performed and that a pixelwise difference map between the two images (presented in the same imaging modality) is then binarized in the unsupervised Bayesian framework. At this stage, we will test several parameter estimation procedures combined with several segmentation strategies based on different Bayesian cost functions. The experiments for change detection, with real images showing different multimodalities and changed events, indicate that this new fractal-based projection method, which is entirely based on a series of structural and spatial information, is an interesting alternative to classical regression-based projection methods (based only on luminance transformation). Besides, the experiments also show that the difference map, resulting in this novel projection strategy, is also particularly amenable for an unsupervised Markovian binarization approach. Numéro de notice : A2020-682 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2986239 date de publication en ligne : 30/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2986239 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96207
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 8046 - 8058[article]High-resolution remote sensing image scene classification via key filter bank based on convolutional neural network / Fengpeng Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkLearning-based hyperspectral imagery compression through generative neural networks / Chubo Deng in Remote sensing, vol 12 n° 21 (November 2020)
PermalinkRiver ice segmentation with deep learning / Abhineet Singh in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkObject-based classification of mixed forest types in Mongolia / E. Nyamjargal in Geocarto international, vol 35 n° 14 ([15/10/2020])
Permalink3D hand mesh reconstruction from a monocular RGB image / Hao Peng in The Visual Computer, vol 36 n° 10 - 12 (October 2020)
PermalinkExploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution / Vitor Martins in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
PermalinkfusionImage: An R package for pan‐sharpening images in open source software / Fulgencio Cánovas‐García in Transactions in GIS, Vol 24 n° 5 (October 2020)
PermalinkMultiview automatic target recognition for infrared imagery using collaborative sparse priors / Xuelu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkA novel spectral–spatial based adaptive minimum spanning forest for hyperspectral image classification / Jing Lv in Geoinformatica [en ligne], vol 24 n° 4 (October 2020)
PermalinkA spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications / T. Chakraborty in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
Permalink