Descripteur


Etendre la recherche sur niveau(x) vers le bas
Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection / Zeyang Dou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Hyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection Type de document : Article/Communication Auteurs : Zeyang Dou, Auteur ; Kun Gao, Auteur ; Xiaodian Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6550 - 6564 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse des mélanges spectraux
[Termes descripteurs IGN] distribution de Gauss
[Termes descripteurs IGN] erreur
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] reconstruction d'image
[Termes descripteurs IGN] valeur aberranteRésumé : (auteur) Hyperspectral unmixing, which estimates end-members and their corresponding abundance fractions simultaneously, is an important task for hyperspectral applications. In this article, we propose a new autoencoder-based hyperspectral unmixing model with three novel components. First, we propose a new sparse prior to abundance maps. The proposed prior, called orthogonal sparse prior (OSP), is based on the observations that different abundance maps are close to orthogonal because, generally, no more than two end-members are mixed within one pixel. As opposed to the conventional norm-based sparse prior that assumes the abundance maps are independent, the proposed OSP explores the orthogonality between the abundance maps. Second, we propose the hyper-Laplacian loss to model the reconstruction error. The key observation is that the reconstruction error distribution usually has a heavy-tailed shape, which is better modeled by the hyper-Laplacian distribution rather than the commonly used Gaussian distribution. Third, to ease the side effect of outliers for end-member initializations, we develop a data-driven approach to detect outliers from the raw hyperspectral images. Extensive experiments on both synthetic and real-world data sets show that the proposed method significantly and consistently outperforms the compared state-of-the-art methods, with up to more than 50% improvements. Numéro de notice : A2020-532 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2977819 date de publication en ligne : 16/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2977819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95715
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6550 - 6564[article]Local color and morphological image feature based vegetation identification and its application to human environment street view vegetation mapping, or how green is our county? / Istvan G. Lauko in Geo-spatial Information Science, vol 23 n° 3 (September 2020)
![]()
[article]
Titre : Local color and morphological image feature based vegetation identification and its application to human environment street view vegetation mapping, or how green is our county? Type de document : Article/Communication Auteurs : Istvan G. Lauko, Auteur ; Adam Honts, Auteur ; Jacob Beihoff, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 222 - 236 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] cartographie urbaine
[Termes descripteurs IGN] couleur (variable spectrale)
[Termes descripteurs IGN] densité de la végétation
[Termes descripteurs IGN] extraction de la végétation
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] image panoramique
[Termes descripteurs IGN] image Streetview
[Termes descripteurs IGN] indicateur environnemental
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] Milwaukee
[Termes descripteurs IGN] paysage urbain
[Termes descripteurs IGN] rayonnement proche infrarougeRésumé : (auteur) Measuring the amount of vegetation in a given area on a large scale has long been accomplished using satellite and aerial imaging systems. These methods have been very reliable in measuring vegetation coverage accurately at the top of the canopy, but their capabilities are limited when it comes to identifying green vegetation located beneath the canopy cover. Measuring the amount of urban and suburban vegetation along a street network that is partially beneath the canopy has recently been introduced with the use of Google Street View (GSV) images, made accessible by the Google Street View Image API. Analyzing green vegetation through the use of GSV images can provide a comprehensive representation of the amount of green vegetation found within geographical regions of higher population density, and it facilitates an analysis performed at the street-level. In this paper we propose a fine-tuned color based image filtering and segmentation technique and we use it to define and map an urban green environment index. We deployed this image processing method and, using GSV images as a high-resolution GIS data source, we computed and mapped the green index of Milwaukee County, a 3,082 km2 urban/suburban county in Wisconsin. This approach generates a high-resolution street-level vegetation estimate that may prove valuable in urban planning and management, as well as for researchers investigating the correlation between environmental factors and human health outcomes. Numéro de notice : A2020-563 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2020.1805367 date de publication en ligne : 24/08/2020 En ligne : https://doi.org/10.1080/10095020.2020.1805367 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95880
in Geo-spatial Information Science > vol 23 n° 3 (September 2020) . - pp 222 - 236[article]Pansharpening: context-based generalized Laplacian pyramids by robust regression / Gemine Vivone in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Pansharpening: context-based generalized Laplacian pyramids by robust regression Type de document : Article/Communication Auteurs : Gemine Vivone, Auteur ; Stefano Marano, Auteur ; Jocelyn Chanussot, Auteur Année de publication : 2020 Article en page(s) : pp 6152 - 6167 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse multirésolution
[Termes descripteurs IGN] fonction de transfert de modulation
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image panchromatique
[Termes descripteurs IGN] lissage de données
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] pansharpening (fusion d'images)
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] transformation en ondelettesRésumé : (auteur) Pansharpening refers to the combination of panchromatic (PAN) and multispectral (MS) images, designed to obtain a fused product retaining the fine spatial resolution of the former and the high spectral content of the latter. One of the most popular and successful approaches to pansharpening is the method known as context-based generalized Laplacian pyramid, which requires as a key ingredient for the estimation of the so-called injection coefficients. In this article, we propose the adoption of robust techniques for the estimation of the injection coefficients and detection strategies to select the clusters for which robust regression is needed, providing a suitable balancing between fusion performance and computational burden. Experimental results conducted on five real data sets acquired by the sensors QuickBird, WorldView-3, and WorldView-4, show the superiority of the proposed method with respect to current state-of-the-art pansharpening techniques. Numéro de notice : A2020-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2974806 date de publication en ligne : 04/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2974806 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95706
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6152 - 6167[article]Post‐filtering with surface orientation constraints for stereo dense image matching / Xu Huang in Photogrammetric record, vol 35 n° 171 (September 2020)
![]()
[article]
Titre : Post‐filtering with surface orientation constraints for stereo dense image matching Type de document : Article/Communication Auteurs : Xu Huang, Auteur ; Rongjun Qin, Auteur Année de publication : 2020 Article en page(s) : pp 375-401 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] corrélation automatique de points homologues
[Termes descripteurs IGN] corrélation d'images
[Termes descripteurs IGN] filtrage numérique d'image
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] modèle stéréoscopique
[Termes descripteurs IGN] orientation d'imageRésumé : (Auteur) Dense image matching (DIM) is a critical technique when computing accurate 3D geometric information for many photogrammetric applications. Most DIM methods adopt first‐order regularisation priors for efficient matching, which often introduce stepped biases (also called fronto‐parallel biases) into the matching results. To remove these biases and compute more accurate matching results, this paper proposes a novel post‐filtering method by adjusting the surface orientation of each pixel in the matching process. The core algorithm formulates the post‐filtering as the optimisation of a global energy function with second‐order regularisation priors. A compromise solution of the energy function is computed by breaking the optimisation into a collection of sub‐optimisations of each pixel in a local adaptive window. The proposed method was compared with several state‐of‐the‐art post‐filtering methods on indoor, aerial and satellite datasets. The comparisons demonstrate that the proposed method obtains the highest post‐filtering accuracies on all datasets. Numéro de notice : A2020-437 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12333 date de publication en ligne : 20/09/2020 En ligne : https://doi.org/10.1111/phor.12333 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95843
in Photogrammetric record > vol 35 n° 171 (September 2020) . - pp 375-401[article]Precise extraction of citrus fruit trees from a Digital Surface Model using a unified strategy: detection, delineation, and clustering / Ali Ozgun Ok in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
![]()
[article]
Titre : Precise extraction of citrus fruit trees from a Digital Surface Model using a unified strategy: detection, delineation, and clustering Type de document : Article/Communication Auteurs : Ali Ozgun Ok, Auteur ; Asli Ozdarici-Ok, Auteur Année de publication : 2020 Article en page(s) : pp 557-569 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] Citrus limon
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] état de l'art
[Termes descripteurs IGN] extraction d'arbres
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] modèle stochastique
[Termes descripteurs IGN] TurquieRésumé : (Auteur) In this study, we present an original unified strategy for the precise extraction of individual citrus fruit trees from single digital surface model (DSM) input data. A probabilistic method combining the circular shape information with the knowledge of the local maxima in the DSM has been used for the detection of the candidate trees. An active contour is applied within each detected region to extract the borders of the objects. Thereafter, all extracted objects are seamlessly divided into clusters considering a new feature data set formed by (1) the properties of trees, (2) planting parameters, and (3) neighborhood relations. This original clustering stage has led to two new contributions: (1) particular objects or clustered structures having distinctive characters and relationships other than the citrus objects can be identified and eliminated, and (2) the information revealed by clustering can be used to recover missing citrus objects within and/or nearby each cluster. The main finding of this research is that a successful clustering can provide valuable input for identifying incorrect and missing information in terms of citrus tree extraction. The proposed strategy is validated in eight test sites selected from the northern part of Mersin province of Turkey. The results achieved are also compared with the state-of-the-art methods developed for tree extraction, and the success of the proposed unified strategy is clearly highlighted. Numéro de notice : A2020-491 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.9.557 date de publication en ligne : 01/09/2020 En ligne : https://doi.org/10.14358/PERS.86.9.557 Format de la ressource électronique : LUR article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95933
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 9 (September 2020) . - pp 557-569[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2020091 SL Revue Centre de documentation Revues en salle Disponible Semi-automatic building extraction from WorldView-2 imagery using taguchi optimization / Hasan Tonbul in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
PermalinkWater level prediction from social media images with a multi-task ranking approach / P. Chaudhary in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkShoreline extraction from WorldView2 satellite data in the presence of foam pixels using multispectral classification method / Audrey Minghelli in Remote sensing, vol 12 n° 16 (August 2020)
PermalinkCan SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion / Olivier Stocker in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkCNN semantic segmentation to retrieve past land cover out of historical orthoimages and DSM: first experiments / Arnaud Le Bris in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkCorrection of systematic radiometric inhomogeneity in scanned aerial campaigns using principal component analysis / Lâmân Lelégard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkExtraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkExtraction of urban built-up areas from nighttime lights using artificial neural network / Tingting Xu in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkStructure from motion for complex image sets / Mario Michelini in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkClassification of hyperspectral and LiDAR data using coupled CNNs / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
Permalink