Descripteur
Vedettes matières IGN > Traitement d'image radar et applications
Traitement d'image radar et applications |


Etendre la recherche sur niveau(x) vers le bas
Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon / Tamer ElGharbawi in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : Damage detection using SAR coherence statistical analysis, application to Beirut, Lebanon Type de document : Article/Communication Auteurs : Tamer ElGharbawi, Auteur ; Fawzi Zarzoura, Auteur Année de publication : 2021 Article en page(s) : pp 1 - 9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] Beyrouth
[Termes descripteurs IGN] catastrophe
[Termes descripteurs IGN] corrélation
[Termes descripteurs IGN] décorrélation
[Termes descripteurs IGN] dommage matériel
[Termes descripteurs IGN] étude d'impact
[Termes descripteurs IGN] filtre passe-haut
[Termes descripteurs IGN] image radar moiréeRésumé : (auteur) Early well-coordinated response during unexpected catastrophes can define the near future of the stricken regions. Beirut city, Lebanon, was one of the unfortunate regions to endure the horrific ordeal of an unexpected explosion that caused thousands of human casualties, billions of dollars’ worth of property damage, and destroyed its main maritime entry point. In this paper, we identify damaged regions and classify their severity using a simple and robust SAR correlation technique. We employ phase coherence and amplitude correlation of a SAR stack to estimate pixels’ damage probability using hypothesis testing. We use a spatial phase filter applied in the frequency domain to improve the estimated coherence by removing the spatial decorrelation component of the total estimated coherence. Using this filter improved the coherence of nearly 44.2% of pixels identified with coherence less than 0.25 in our study area. The estimated damaged regions are presented and compared against a damage map issued by Advanced Rapid Imaging and Analysis (ARIA) which shows an average agreement of 68.3%. Also, a fine agreement was observed when compared to optical satellite images. Numéro de notice : A2021-100 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.00 date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96871
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 1 - 9[article]Robust unsupervised small area change detection from SAR imagery using deep learning / Xinzheng Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : Robust unsupervised small area change detection from SAR imagery using deep learning Type de document : Article/Communication Auteurs : Xinzheng Zhang, Auteur ; Hang Su, Auteur ; Ce Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] algorithme de superpixels
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] filtre de déchatoiement
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] ondelette
[Termes descripteurs IGN] reconstruction
[Termes descripteurs IGN] regroupement de donnéesRésumé : (auteur) Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection. Numéro de notice : A2021-103 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.004 date de publication en ligne : 17/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96879
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 79 - 94[article]Comprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 / Matthias Schlögl in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : Comprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 Type de document : Article/Communication Auteurs : Matthias Schlögl, Auteur ; Barbara Widhalm, Auteur ; Michael Avian, Auteur Année de publication : 2021 Article en page(s) : pp 132 - 146 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] déformation d'édifice
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] lissage de données
[Termes descripteurs IGN] pont
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance d'ouvrage
[Termes descripteurs IGN] variation saisonnière
[Termes descripteurs IGN] Vienne (capitale Autriche)Résumé : (auteur) We present a comprehensive methodological framework for structural deformation monitoring of critical infrastructure assets based on differential SAR interferometry. By employing persistent scatterer interferometry, deformation time series in line-of-sight are derived from freely available Sentinel-1 single look complex products. These raw time series are analysed and refined using an extensive post-processing chain to obtain daily rates for vertical and horizontal deformation components. The post-processing includes cleaning, smoothing and a temperature correction to account for different sensing times in ascending and descending orbits. Longitudinal clustering of time series is used to reveal spatial patterns in the single epoch deformation series. Seasonal trend decomposition of the aggregated time series is performed to separate deformation trends from seasonal deformations. The applicability of the framework is showcased at the example of an integral concrete bridge located in the port of Vienna. Results are validated against in situ deformation measurements. The presented framework constitutes a blueprint for the continuous monitoring of critical infrastructure assets using satellite interferometry, which may supplement conventional structural health monitoring. Numéro de notice : A2021-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.001 date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96855
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 132 - 146[article]G-band radar for humidity and cloud remote sensing / Ken B. Cooper in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : G-band radar for humidity and cloud remote sensing Type de document : Article/Communication Auteurs : Ken B. Cooper, Auteur ; Richard J. Roy, Auteur ; Robert Dengler, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1106 - 1117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] antenne radar
[Termes descripteurs IGN] bruit thermique
[Termes descripteurs IGN] humidité de l'air
[Termes descripteurs IGN] modèle atmosphérique
[Termes descripteurs IGN] nuage
[Termes descripteurs IGN] rapport signal sur bruit
[Termes descripteurs IGN] réflectivité
[Termes descripteurs IGN] télédétection en hyperfréquenceRésumé : (auteur) VIPR (vapor in-cloud profiling radar) is a tunable G-band radar designed for humidity and cloud remote sensing. VIPR uses all-solid-state components and operates in a frequency-modulated continuous-wave (FMCW) radar mode, offering a transmit power of 200–300 mW. Its typical chirp bandwidth of 10 MHz over a center-frequency tuning span of 167–174.8 GHz results in a nominal range resolution of 15 m. The radar’s measured noise figure over the transmit band is between 7.4 and 10.4 dB, depending on its frequency and hardware configuration, and its calculated antenna gain is 58 dB. These parameters mean that with typical 1 ms chirp times, single-pulse cloud reflectivities as low as −26 dBZ are detectable with unity signal-to-noise at 5 km. Experimentally, radar returns from ice clouds above 10 km in height have been observed from the ground. VIPR’s absolute sensitivity was validated using a spherical metal target in the radar antenna’s far-field, and a G-band switch has been implemented in an RF calibration loop for periodic recalibration. The radar achieves high sensitivity with thermal noise limited detection both by virtue of its low-noise RF architecture and by using a quasioptical duplexing method that preserves ultrahigh transmit/receive isolation despite operation in an FMCW mode with a single primary antenna shared by the transmitter and receiver. Numéro de notice : A2021-112 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2995325 date de publication en ligne : 04/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2995325 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96916
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1106 - 1117[article]Multiscale CNN with autoencoder regularization joint contextual attention network for SAR image classification / Zitong Wu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : Multiscale CNN with autoencoder regularization joint contextual attention network for SAR image classification Type de document : Article/Communication Auteurs : Zitong Wu, Auteur ; Biao Hou, Auteur ; Licheng Jiao, Auteur Année de publication : 2021 Article en page(s) : pp 1200 - 1213 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] algorithme d'interprétation
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification contextuelle
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] image radar moiréeRésumé : (auteur) Synthetic aperture radar (SAR) image classification is a fundamental research direction in image interpretation. With the development of various intelligent technologies, deep learning techniques are gradually being applied to SAR image classification. In this study, a new SAR classification algorithm known as the multiscale convolutional neural network with an autoencoder regularization joint contextual attention network (MCAR-CAN) is proposed. The MCAR-CAN has two branches: the autoencoder regularization branch and the context attention branch. First, autoencoder regularization is used for the reconstruction of the input to regularize the classification in the autoencoder regularization branch. Multiscale input and an asymmetric structure of the autoencoder branch cause the network more to be focused on classification than on reconstruction. Second, the attention mechanism is used to produce an attention map in which each attention weight corresponds to a context correlation in attention branch. The robust features are obtained by the attention mechanism. Finally, the features obtained by the two branches are spliced for classification. In addition, a new training strategy and a postprocessing method are designed to further improve the classification accuracy. Experiments performed on the data from three SAR images demonstrated the effectiveness and robustness of the proposed algorithm. Numéro de notice : A2021-113 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3004911 date de publication en ligne : 07/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3004911 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96918
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 1200 - 1213[article]SAR image speckle reduction based on nonconvex hybrid total variation model / Yuli Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkEvaluation of a neural network with uncertainty for detection of ice and water in SAR imagery / Nazanin Asadi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkHolographic SAR tomography 3-D reconstruction based on iterative adaptive approach and generalized likelihood ratio test / Dong Feng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkImpact of forest disturbance on InSAR surface displacement time series / Paula M. Bürgi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkSAR data for tropical forest disturbance alerts in French Guiana: Benefit over optical imagery / Marie Ballère in Remote sensing of environment, Vol 252 (January 2021)
PermalinkMonitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas / Nadia Ouaadi in Remote sensing of environment, Vol 251 (15 December 2020)
PermalinkIntegrated Kalman filter of accurate ranging and tracking with wideband radar / Shaopeng Wei in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkSemi-supervised PolSAR image classification based on improved tri-training with a minimum spanning tree / Shuang Wang in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkDisplacement monitoring of upper Atbara dam based on time series InSAR / Q.Q. Wang in Survey review, vol 52 n° 375 (November 2020)
PermalinkFusion of sparse model based on randomly erased image for SAR occluded target recognition / Zhiqiang He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
Permalink