Descripteur
Vedettes matières IGN > Traitement d'image radar et applications
Traitement d'image radar et applications |
Documents disponibles dans cette catégorie (655)


Etendre la recherche sur niveau(x) vers le bas
Increasing and widespread vulnerability of intact tropical rainforests to repeated droughts / Shengli Tao in Proceedings of the National Academy of Sciences of the United States of America PNAS, vol 119 n° 37 (2022)
![]()
[article]
Titre : Increasing and widespread vulnerability of intact tropical rainforests to repeated droughts Type de document : Article/Communication Auteurs : Shengli Tao, Auteur ; Jérôme Chave, Auteur ; Pierre-Louis Frison , Auteur ; et al., Auteur
Année de publication : 2022 Projets : 3-projet - voir note / Article en page(s) : n° e2116626119 Note générale : bibliographie
This study was supported by an Investissement d’Avenir grant managed by the Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-25-01; TULIP, ref. ANR-10-LABX-0041; ANAEE-France: ANR-11-INBS-0001), and by the National Natural Science Foundation of China (grant no. 31988102). This research was also supported by a Centre National d' Etudes Spatiales (CNES) postdoctoral fellowship to S.T., the CNES-BIOMASS pluriannual project, and the European Space Agency (ESA) Climate Change Initiative (CCI) Biomass project (contract no. 4000123662/18/I-NB).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] forêt tropicale
[Termes IGN] image radar
[Termes IGN] sécheresse
[Termes IGN] série temporelle
[Termes IGN] vulnérabilitéRésumé : (auteur) Intact tropical rainforests have been exposed to severe droughts in recent decades, which may threaten their integrity, their ability to sequester carbon, and their capacity to provide shelter for biodiversity. However, their response to droughts remains uncertain due to limited high-quality, long-term observations covering extensive areas. Here, we examined how the upper canopy of intact tropical rainforests has responded to drought events globally and during the past 3 decades. By developing a long pantropical time series (1992 to 2018) of monthly radar satellite observations, we show that repeated droughts caused a sustained decline in radar signal in 93%, 84%, and 88% of intact tropical rainforests in the Americas, Africa, and Asia, respectively. Sudden decreases in radar signal were detected around the 1997–1998, 2005, 2010, and 2015 droughts in tropical Americas; 1999–2000, 2004–2005, 2010–2011, and 2015 droughts in tropical Africa; and 1997–1998, 2006, and 2015 droughts in tropical Asia. Rainforests showed similar low resistance (the ability to maintain predrought condition when drought occurs) to severe droughts across continents, but American rainforests consistently showed the lowest resilience (the ability to return to predrought condition after the drought event). Moreover, while the resistance of intact tropical rainforests to drought is decreasing, albeit weakly in tropical Africa and Asia, forest resilience has not increased significantly. Our results therefore suggest the capacity of intact rainforests to withstand future droughts is limited. This has negative implications for climate change mitigation through forest-based climate solutions and the associated pledges made by countries under the Paris Agreement. Numéro de notice : A2022-681 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1073/pnas.2116626119 En ligne : https://doi.org/10.1073/pnas.2116626119 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101538
in Proceedings of the National Academy of Sciences of the United States of America PNAS > vol 119 n° 37 (2022) . - n° e2116626119[article]PS-InSAR based validated landslide susceptibility modelling: a case study of Ghizer valley, Northern Pakistan / Sajid Hussain in Geocarto international, vol 37 n° 13 ([15/07/2022])
![]()
[article]
Titre : PS-InSAR based validated landslide susceptibility modelling: a case study of Ghizer valley, Northern Pakistan Type de document : Article/Communication Auteurs : Sajid Hussain, Auteur ; Sun Hongxing, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 3941 - 3962 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] aléa
[Termes IGN] effondrement de terrain
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] PakistanRésumé : (auteur) Northern Pakistan is a rugged mountainous area that is seismically active, high gradients, disintegrated lithology, and glaciers in the high peaks. District Ghizer lies among the most vulnerable areas and experience landslides every year due to different causative factors. This study has carried out to prepare a detailed landslide inventory and to develop a susceptibility model for the area. The most followed and probabilistic approach, Frequency Ratio (FR) model and a semi-qualitative Analytical Hierarchy Process (AHP) approach were applied to find the correlation between causative factors and mapped landslides. Persistent Scatterer Interferometry (PSI) Interferometric Synthetic Aperture Radar (InSAR) technique was applied to check deformation movement in the susceptible zones of extracted models, which showed the high Line of Sight (LOS) deformation velocity in high susceptible zones of both models. The extracted Landslide Susceptibility Index (LSI) models showed 82.82% and 73.43% of prediction accuracy for FR and AHP method calculated by Area Under Curve (AUC) of Receiver operating characteristic (ROC) method. The models revealed Slope, barrenness, and Geology are the main causative factors of landslide activities in the study area. Finally, both Landslide susceptibility index maps were classified into five susceptibility classes. As the study area is very prone to landslide disasters so these susceptibility models will be helpful to delineate hazardous zones for the medication of future landslides disasters in the area as well as it can be used as a tool in the planning strategies by decision-makers in development projects in the area. Numéro de notice : A2022-589 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1870165 Date de publication en ligne : 11/02/2021 En ligne : https://doi.org/10.1080/10106049.2020.1870165 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101363
in Geocarto international > vol 37 n° 13 [15/07/2022] . - pp 3941 - 3962[article]Fusion of GNSS and InSAR time series using the improved STRE model: applications to the San Francisco bay area and Southern California / Huineng Yan in Journal of geodesy, vol 96 n° 7 (July 2022)
![]()
[article]
Titre : Fusion of GNSS and InSAR time series using the improved STRE model: applications to the San Francisco bay area and Southern California Type de document : Article/Communication Auteurs : Huineng Yan, Auteur ; Wujiao Dai, Auteur ; Lei Xie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 47 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GNSS
[Termes IGN] faille géologique
[Termes IGN] filtrage spatiotemporel
[Termes IGN] fusion de données
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] modélisation spatiale
[Termes IGN] rééchantillonnage
[Termes IGN] série temporelleRésumé : (auteur) The spatio-temporal random effects (STRE) model is a classic dynamic filtering model, which can be used to fuse GNSS and InSAR deformation data. The STRE model uses a certain time span of high spatial resolution Interferometric Synthetic Aperture Radar (InSAR) time series data to establish a spatial model and then obtain a deformation result with high spatio-temporal resolution through the state transition equation recursively in time domain. Combined with the Kalman filter, the STRE model is continuously updated and modified in time domain to obtain higher accuracy result. However, it relies heavily on the prior information and personal experience to establish an accurate spatial model. To the authors' knowledge, there are no publications which use the STRE model with multiple sets of different deformation monitoring data to verify its applicability and reliability. Here, we propose an improved STRE model to automatically establish accurate spatial model to improve the STRE model, then apply it to the fusion of GNSS and InSAR deformation data in the San Francisco Bay Area covering approximately 6000 km2 and in Southern California covering approximately 100,000 km2. Our experimental results show that the improved STRE model can achieve good fusion effects in both study areas. For internal inspection, the average error RMS values in the two regions are 0.13 mm and 0.06 mm for InSAR and 2.4 and 2.8 mm for GNSS, respectively; for Jackknife cross-validation, the average error RMS values are 6.0 and 1.3 mm for InSAR and 4.3 and 4.8 mm for GNSS in the two regions, respectively. We find that the deformation rate calculated from the fusion results is highly consistent with the existing studies, the significant difference in the deformation rate on both sides of the major faults in the two regions can be clearly seen, and the area with abnormal deformation rate corresponds well to the actual situation. These results indicate that the improved STRE model can reduce the reliance on prior information and personal experience, realize the effective fusion of GNSS and InSAR deformation data in different regions, and also has the advantages of high accuracy and strong applicability. Numéro de notice : A2022-553 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1007/s00190-022-01636-7 Date de publication en ligne : 05/07/2022 En ligne : https://doi.org/10.1007/s00190-022-01636-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101165
in Journal of geodesy > vol 96 n° 7 (July 2022) . - n° 47[article]Flood mapping using multi-temporal Sentinel-1 SAR images: A case study—Inaouene watershed from Northeast of Morocco / Brahim Benzougagh in Iranian Journal of Science and Technology - Transactions of Civil Engineering, vol 46 n° 2 (April 2022)
![]()
[article]
Titre : Flood mapping using multi-temporal Sentinel-1 SAR images: A case study—Inaouene watershed from Northeast of Morocco Type de document : Article/Communication Auteurs : Brahim Benzougagh, Auteur ; Pierre-Louis Frison , Auteur ; Sarita Gajbhiye Meshram, Auteur ; Larbi Boudad, Auteur ; Abdallah Dridri, Auteur ; Driss Sadkaoui, Auteur ; Khalid Mimich, Auteur ; Khaled Mohamed Khedher, Auteur
Année de publication : 2022 Projets : 3-projet - voir note / Article en page(s) : pp 1481 - 1490 Note générale : bibliographie
This research work was supported by the Deanship of Scientific Research at King Khalid University under Grant number RGP. 2/173/42.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bassin hydrographique
[Termes IGN] cartographie des risques
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] inondation
[Termes IGN] Maroc
[Termes IGN] plan de prévention des risques
[Termes IGN] prévention des risques
[Termes IGN] risque naturelRésumé : (auteur) Natural disasters like floods are happening worldwide. Due to their negative impact on different social, economic and environmental aspects need to monitor and map these phenomena have increased. In fact, to access the zones affected by the flood, we use open source remote sensing (RS) images acquired by optical and radar sensors. Furthermore, we present a method using Sentinel-1 images; we suggest applying Ground Range Detected (GRD) images. For this purpose, pre-processed built and provided by the European Space Agency (ESA), preserved by free software Sentinel Application Platform (SNAP) for data extraction around appropriate demand. Moreover, the principal objective of this article is to assess the capability of Sentinel-1 Synthetic Aperture Radar (SAR) images in order to visualize flood areas in the Inaouene watershed located in north-eastern of Morocco. The origin of this natural hazard is the combination of natural and anthropogenic factors that makes the watershed vulnerable with a sub-annual frequency. The results of this work help decision-makers and managers in the field of natural risk management and land-use planning to implement a strategy and action plan for the protection of the populations and the environment against the negative impact of floods. Numéro de notice : A2022-580 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.1007/s40996-021-00683-y Date de publication en ligne : 18/06/2021 En ligne : https://doi.org/10.1007/s40996-021-00683-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99581
in Iranian Journal of Science and Technology - Transactions of Civil Engineering > vol 46 n° 2 (April 2022) . - pp 1481 - 1490[article]Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models / Lamin R. Mansaray in Geocarto international, vol 37 n° 5 ([01/03/2022])
![]()
[article]
Titre : Evaluating Sentinel-1A datasets for rice leaf area index estimation based on machine learning regression models Type de document : Article/Communication Auteurs : Lamin R. Mansaray, Auteur ; Fumin Wang, Auteur ; Adam Sheka Kanu, Auteur ; Lingbo Yang, Auteur Année de publication : 2022 Article en page(s) : pp 1225 - 1236 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-SAR
[Termes IGN] jeu de données localisées
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de régression
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] polarisation
[Termes IGN] rizièreRésumé : (Auteur) Three Sentinel-1A datasets in vertical transmitted and horizontal received (VH) and vertical transmitted and vertical received (VV) polarisations, and the linear combination of VH and VV (VHVV) are evaluated for rice green leaf area index (LAI) estimation using four machine learning regression models [Support Vector Machine (SVM), k-Nearest Neighbour (k-NN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT)]. Results showed that for the entire growing season, VV outperformed VH, recording an R2 of 0.68 and an RMSE of 0.98 m2/m2 with the k-NN model. However, VHVV produced the most accurate estimates with GBDT (R2 of 0.82 and RMSE of 0.68 m2/m2), followed by that of VHVV with RF (R2 of 0.78 and RMSE of 0.90 m2/m2). Our findings have further confirmed that combining VH and VV data can achieve improved rice growth modelling, and that tree-based algorithms can better handle data dimensionality. Numéro de notice : A2022-274 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1773545 Date de publication en ligne : 05/06/2020 En ligne : https://doi.org/10.1080/10106049.2020.1773545 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100753
in Geocarto international > vol 37 n° 5 [01/03/2022] . - pp 1225 - 1236[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022051 SL Revue Centre de documentation Revues en salle Disponible Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning / Feng Zhao in Remote sensing of environment, vol 269 (February 2022)
PermalinkApprentissage profond pour l'imagerie SAR : du débruitage à l'interprétation de scène / Emanuele Dalsasso (2022)
PermalinkPermalinkNon-linear GNSS signal processing applied to land observation with high-rate airborne reflectometry / Hamza Issa (2022)
PermalinkPermalinkIn situ C-band data for wheat physiological functioning monitoring in the South Mediterranean region / Nadia Ouaadi (2022)
PermalinkStudying informativeness of satellite image texture for sea ice state retrieval using deep learning methods / Clément Fougerouse (2022)
PermalinkUse of multi-temporal and multi-sensor data for continental water body extraction in the context of the SWOT mission / Nicolas Gasnier (2022)
PermalinkImproving soil moisture retrieval from GNSS-interferometric reflectometry: parameters optimization and data fusion via neural network / Yajie Shi in International Journal of Remote Sensing IJRS, vol 42 n° 23 (1-10 December 2021)
PermalinkPermalink