Descripteur
Termes IGN > cartographie > rédaction cartographique > habillage cartographique > échelle cartographique > grande échelle
grande échelleVoir aussi |
Documents disponibles dans cette catégorie (177)



Etendre la recherche sur niveau(x) vers le bas
Large-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images / Lingdong Mao in Landscape and Urban Planning, vol 222 (June 2022)
![]()
[article]
Titre : Large-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images Type de document : Article/Communication Auteurs : Lingdong Mao, Auteur ; Zhe Zheng, Auteur ; Xiangfeng Meng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104384 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] détection d'objet
[Termes IGN] grande échelle
[Termes IGN] identification automatique
[Termes IGN] image à haute résolution
[Termes IGN] milieu urbain
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Urban vacant land is a growing issue worldwide. However, most of the existing research on urban vacant land has focused on small-scale city areas, while few studies have focused on large-scale national areas. Large-scale identification of urban vacant land is hindered by the disadvantage of high cost and high variability when using the conventional manual identification method. Criteria inconsistency in cross-domain identification is also a major challenge. To address these problems, we propose a large-scale automatic identification framework of urban vacant land based on semantic segmentation of high-resolution remote sensing images and select 36 major cities in China as study areas. The framework utilizes deep learning techniques to realize automatic identification and introduces the city stratification method to address the challenge of identification criteria inconsistency. The results of the case study on 36 major Chinese cities indicate two major conclusions. First, the proposed framework of vacant land identification can achieve over 90 percent accuracy of the level of professional auditors with much higher result stability and approximately 15 times higher efficiency compared to the manual identification method. Second, the framework has strong robustness and can maintain high performance in various cities. With the above advantages, the proposed framework provides a practical approach to large-scale vacant land identification in various countries and regions worldwide, which is of great significance for the academic development of urban vacant land and future urban development. Numéro de notice : A2022-267 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.landurbplan.2022.104384 Date de publication en ligne : 03/03/2022 En ligne : https://doi.org/10.1016/j.landurbplan.2022.104384 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100275
in Landscape and Urban Planning > vol 222 (June 2022) . - n° 104384[article]A cost-effective algorithm for calibrating multiscale geographically weighted regression models / Bo Wu in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
![]()
[article]
Titre : A cost-effective algorithm for calibrating multiscale geographically weighted regression models Type de document : Article/Communication Auteurs : Bo Wu, Auteur ; Jinbiao Yan, Auteur ; Hui Lin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 898 - 917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multiéchelle
[Termes IGN] grande échelle
[Termes IGN] hétérogénéité spatiale
[Termes IGN] jeu de données
[Termes IGN] modélisation spatiale
[Termes IGN] régression géographiquement pondéréeRésumé : (auteur) The multiscale geographically weighted regression (MGWR) model is a useful extension of the geographically weighted regression (GWR) model. MGWR, however, is a kind of Nadaraya–Watson kernel smoother, which usually leads to inaccurate estimates for the regression function and suffers from the boundary effect. Moreover, the widely used calibration technique for the MGWR with a back-fitting estimator (MGWR-BF) is computationally demanding, preventing it from being applied to large-scale data. To overcome these problems, we proposed a local linear-fitting-based MGWR (MGWR-LL) by introducing a local spatially varying coefficient model in which coefficients of different variables could be characterised as linear functions of spatial coordinates with different degrees of smoothness. Then the model was calibrated with a two-step least-squared estimated algorithm. Both simulated and actual data were implemented to validate the performance of the proposed method. The results consistently showed that the MGWR-LL automatically corrected for the boundary effect and improved the accuracy in most cases, not only in the goodness-of-fit measure but also in reducing the bias of the coefficient estimates. Moreover, the MGWR-LL significantly outperformed the MGWR-BF in computational cost, especially for larger-scale data. These results demonstrated that the proposed method can be a useful tool for the MGWR calibration. Numéro de notice : A2022-342 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1999457 Date de publication en ligne : 29/11/2021 En ligne : https://doi.org/10.1080/13658816.2021.1999457 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100516
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 898 - 917[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022051 SL Revue Centre de documentation Revues en salle Disponible A method of extracting high-accuracy elevation control points from ICESat-2 altimetry data / Binbin Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 11 (November 2021)
![]()
[article]
Titre : A method of extracting high-accuracy elevation control points from ICESat-2 altimetry data Type de document : Article/Communication Auteurs : Binbin Li, Auteur ; Huan Xie, Auteur ; Shijie Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 821 - 830 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] altimétrie satellitaire par laser
[Termes IGN] contour
[Termes IGN] données ICEsat
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Etats-Unis
[Termes IGN] grande échelle
[Termes IGN] modèle numérique de surface
[Termes IGN] Nouvelle-Zélande
[Termes IGN] photon
[Termes IGN] semis de points
[Termes IGN] télémétrie laser aéroportéRésumé : (Auteur) Due to its high ranging accuracy, spaceborne laser altimetry technology can improve the accuracy of satellite stereo mapping without ground control points. In the past, full-waveform ICE, CLOUD, and Land Elevation Satellite (ICESat) laser altimeter data have been used as one of the main data sources for global elevation control. As a second-generation satellite, ICESat-2 is equipped with an altimeter using photon counting mode. This can further improve the application capability for stereo mapping because of the six laser beams with high along-track repetition frequency, which can provide more detailed ground contour descriptions. Previous studies have addressed how to extract high-accuracy elevation control points from ICESat data. However, these methods cannot be directly applied to ICESat-2 data because of the different modes of the laser altimeters. Therefore, in this paper, we propose a method using comprehensive evaluation labels that can extract high-accuracy elevation control points that meet the different level elevation accuracy requirements for large scale mapping from the ICESat-2 land-vegetation along-track product. The method was verified using two airborne lidar data sets. In flat, hilly, and mountainous areas, by using our method to extract the terrain elevation, the root-mean-square error of elevation control points decrease from 1.249–2.094 m, 2.237–3.225 m, and 2.791–4.822 m to 0.262–0.429 m, 0.484–0.596 m, and 0.611–1.003 m, respectively. The results show that the extraction elevations meet the required accuracy for large scale mapping. Numéro de notice : A2021-895 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00009R2 Date de publication en ligne : 01/11/2021 En ligne : https://doi.org/10.14358/PERS.21-00009R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99271
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 11 (November 2021) . - pp 821 - 830[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021111 SL Revue Centre de documentation Revues en salle Disponible Unsupervised representation high-resolution remote sensing image scene classification via contrastive learning convolutional neural network / Fengpeng Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 8 (August 2021)
![]()
[article]
Titre : Unsupervised representation high-resolution remote sensing image scene classification via contrastive learning convolutional neural network Type de document : Article/Communication Auteurs : Fengpeng Li, Auteur ; Jiabao Li, Auteur ; Wei Han, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 577 - 591 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal
[Termes IGN] grande échelle
[Termes IGN] image à haute résolution
[Termes IGN] image aérienne
[Termes IGN] moyenne échelle
[Termes IGN] petite échelle
[Termes IGN] régression linéaire
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Inspired by the outstanding achievement of deep learning, supervised deep learning representation methods for high-spatial-resolution remote sensing image scene classification obtained state-of-the-art performance. However, supervised deep learning representation methods need a considerable amount of labeled data to capture class-specific features, limiting the application of deep learning-based methods while there are a few labeled training samples. An unsupervised deep learning representation, high-resolution remote sensing image scene classification method is proposed in this work to address this issue. The proposed method, called contrastive learning, narrows the distance between positive views: color channels belonging to the same images widens the gaps between negative view pairs consisting of color channels from different images to obtain class-specific data representations of the input data without any supervised information. The classifier uses extracted features by the convolutional neural network (CNN)-based feature extractor with labeled information of training data to set space of each category and then, using linear regression, makes predictions in the testing procedure. Comparing with existing unsupervised deep learning representation high-resolution remote sensing image scene classification methods, contrastive learning CNN achieves state-of-the-art performance on three different scale benchmark data sets: small scale RSSCN7 data set, midscale aerial image data set, and large-scale NWPU-RESISC45 data set. Numéro de notice : A2021-670 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.8.577 Date de publication en ligne : 01/08/2021 En ligne : https://doi.org/10.14358/PERS.87.8.577 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98806
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 8 (August 2021) . - pp 577 - 591[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021081 SL Revue Centre de documentation Revues en salle Disponible An analysis of the spatial and temporal distribution of large‐scale data production events in OpenStreetMap / A. Yair Grinberger in Transactions in GIS, Vol 25 n° 2 (April 2021)
![]()
[article]
Titre : An analysis of the spatial and temporal distribution of large‐scale data production events in OpenStreetMap Type de document : Article/Communication Auteurs : A. Yair Grinberger, Auteur ; Moritz Schott, Auteur ; Martin Raifer, Auteur ; Alexander Zipf, Auteur Année de publication : 2021 Article en page(s) : pp 622 - 641 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] distribution spatiale
[Termes IGN] données localisées des bénévoles
[Termes IGN] données localisées libres
[Termes IGN] données spatiotemporelles
[Termes IGN] extraction de données
[Termes IGN] grande échelle
[Termes IGN] OpenStreetMap
[Termes IGN] qualité des donnéesRésumé : (Auteur) Organized mapping activities within OpenStreetMap frequently lead to the production of massive amounts of data over a short period. In this article we utilize a novel procedure to identify such large‐scale data production events in the history of OpenStreetMap and analyze their patterns. We find that events account for a significant share of OpenStreetMap data and that organizational practices have shifted over time towards local knowledge‐based events and well‐organized data imports. However, regions in the “Global South” remain dependent on remote mapping events, pointing to uneven geographies of representation. We also find that events are frequently followed by periods of increased activity, with the exact nature of effects depending on contextual elements such as previous events. These findings portray organized activities as a significant and unique component which requires consideration when using OpenStreetMap data and analyzing their quality. Numéro de notice : A2021-360 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12746 Date de publication en ligne : 19/03/2021 En ligne : https://doi.org/10.1111/tgis.12746 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97624
in Transactions in GIS > Vol 25 n° 2 (April 2021) . - pp 622 - 641[article]Web‐based real‐time visualization of large‐scale weather radar data using 3D tiles / Mingyue Lu in Transactions in GIS, Vol 25 n° 1 (February 2021)
PermalinkAmbiguous use of geographical information systems for the rectification of large-scale geometric maps / Anders Wästfelt in Cartographic journal (the), Vol 57 n° 3 (August 2020)
PermalinkPermalinkLarge scale textured mesh reconstruction from mobile mapping images and LIDAR scans / Mohamed Boussaha in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2 (June 2018)
PermalinkRevue des descripteurs tridimensionnels (3D) pour la catégorisation des nuages de points acquis avec un système LiDAR de télémétrie mobile / Sylvie Daniel in Geomatica [en ligne], vol 72 n° 1 (March 2018)
PermalinkDévelopper un modèle de macro-dynamique forestière pour simuler la dynamique des forêts françaises dans un contexte non-stationnaire / Timothée Audinot (2018)
PermalinkDomain adaptation for large scale classification of very high resolution satellite images with deep convolutional neural networks / Tristan Postadjian (2018)
PermalinkPathways to bridge the biophysical realism gap in ecosystem services mapping approaches / Sandra Lavorel in Ecological indicators, vol 74 (March 2017)
PermalinkCitizen empowered mapping, ch. 1. Level of details harmonization operations in OpenStreetMap based large scale maps / Guillaume Touya (2017)
PermalinkApport des images THRS pour la catégorisation des agro-systèmes complexes à Mayotte / Rafaël Molina in Géomatique expert, n° 111 (juillet- août 2016)
Permalink