Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > restauration d'image > correction d'image > correction géométrique
correction géométrique |
Documents disponibles dans cette catégorie (206)



Etendre la recherche sur niveau(x) vers le bas
Estimation of uneven-aged forest stand parameters, crown closure and land use/cover using the Landsat 8 OLI satellite image / Sinan Kaptan in Geocarto international, vol 37 n° 5 ([01/03/2022])
![]()
[article]
Titre : Estimation of uneven-aged forest stand parameters, crown closure and land use/cover using the Landsat 8 OLI satellite image Type de document : Article/Communication Auteurs : Sinan Kaptan, Auteur ; Hasan Aksoy, Auteur Année de publication : 2022 Article en page(s) : pp 1408 - 1425 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification dirigée
[Termes IGN] correction géométrique
[Termes IGN] forêt inéquienne
[Termes IGN] houppier
[Termes IGN] image Landsat-OLI
[Termes IGN] occupation du sol
[Termes IGN] peuplement forestier
[Termes IGN] Turquie
[Termes IGN] utilisation du solRésumé : (Auteur) This study used the Landsat 8 OLI satellite image and the supervised classification method to estimate uneven-aged forest stand parameters and land use/cover. The spatial success of classification was also investigated. The overall success rates and Kappa values of the classification were, respectively, 74.7% and 0.75 for actual structural type, 84.6% and 0.80 for crown closure, and 88.35% and 0.81 for land use class, whereas the spatial success of classification on the forest cover type map was 36.91% for actual structural type, 64.74% for crown closure, and 41.78% for land use/cover class. The results revealed that the Landsat 8 OLI image can be used to identify stand parameters and land use/cover class. However, because the spatial success rates were below 50% for the actual structural type and land use/cover class of the stand types, it is not suitable for use in spatial classification determination for these classes. Numéro de notice : A2022-277 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1765888 Date de publication en ligne : 20/05/2020 En ligne : https://doi.org/10.1080/10106049.2020.1765888 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100795
in Geocarto international > vol 37 n° 5 [01/03/2022] . - pp 1408 - 1425[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022051 RAB Revue Centre de documentation En réserve L003 Disponible Preparation of the VENµS satellite data over Israel for the input into the GRASP data treatment algorithm / Maeve Blarel (2022)
![]()
Titre : Preparation of the VENµS satellite data over Israel for the input into the GRASP data treatment algorithm Type de document : Mémoire Auteurs : Maeve Blarel, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 73 p. Format : 21 x 30 cm Note générale : Bibliographie
Rapport de projet pluridisciplinaire, cycle ING2Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aérosol
[Termes IGN] conversion de données
[Termes IGN] correction atmosphérique
[Termes IGN] correction géométrique
[Termes IGN] correction radiométrique
[Termes IGN] image hyperspectrale
[Termes IGN] image Venµs-VSSC
[Termes IGN] Israël
[Termes IGN] microsatellite
[Termes IGN] Python (langage de programmation)
[Termes IGN] série temporelle
[Termes IGN] traitement de données localiséesIndex. décimale : PROJET Mémoires : Rapports de projet - stage des ingénieurs de 2e année Résumé : (Auteur) Réalisé au sein du laboratoire de télédétection de l’Institut Jacob Blaustein pour la recherche sur le désert (BIDR) de l’Université Ben-Gourion du Négev, en Israël, et financé par une mission du CNRS, ce stage a pour objectif l’adaptation d’un driver dédié à la conversion des données satellites VENµS et à leur préparation pour le traitement par l’algorithme GRASP. VENµS (Vegetation and Environment monitoring New Micro-Satellite) est un microsatellite, fruit d’une collaboration franco-israélienne pour l’observation de la Terre à l’aide d’une caméra super spectrale. Les visées de la mission scientifique sont déterminées par le CESBIO et le CNES, en France, et l’Université Ben-Gourion du Néguev, en Israël. Son objectif est de fournir des observations à haute résolution spatiale pour la recherche scientifique portant sur la surveillance, l’analyse et la caractérisation du fonctionnement de la surface terrestre, sous les effets de facteurs environnementaux et des activités humaines. Plus particulièrement, ces données sont dédiées à des applications dans l’agriculture de précision, l’urbanisation et la surveillance des masses d’eau. Les images acquises au-dessus d’Israël ont un format différent de celles prises à travers le monde pour une gestion distincte des données. Aujourd’hui, les recherches israélienne et française souhaitent une caractérisation des aérosols atmosphériques sur Israël et un traitement des données par GRASP. La problématique rencontrée est la conversion des données sur Israël pour leur entrée dans cet algorithme. Après une phase de découverte et de compréhension des données satellites VENµS et celles requises à l’entrée de GRASP, le travail de ce présent stage consiste à développer une solution d’adaptation du programme informatique pour la conversion des données VENµS sur Israël. Des perspectives existent pour ce projet. Pour observer la Terre, on souhaite des données de plus en plus précises par des améliorations de l’acquisition et du traitement des images. Concernant l’acquisition de données, les intervalles de temps de revisite limitent actuellement l’avantage multi-pixel. D’un autre côté, l’un des objectifs de cette mission satellitaire est le développement des algorithmes pour exploiter des séries temporelles de données, incluant les corrections géométriques et radiométriques. Pour GRASP, la gestion du masque des nuages doit être perfectionnée et concernant le driver adapté, les observations directionnelles demandent une exploitation plus grande. L’ensemble des codes Python, fonctionnels et commentés, implémenté au cours du stage est confidentiel et reste à la propriété de GRASP. Par conséquent, aucun script provenant du code source ne sera présenté au cours de ce rapport. Note de contenu : Introduction
1. Internship presentation
1.1 Context
1.2 Issues and Objectives
1.3 State of current research
2. Technical study
2.1 Driver architecture
2.2 Language, libraries and software in use
2.3 The data
3. Achievement
3.1 Implementation
3.2 Progress of internship
3.3 Difficulties encountered and Solutions adopted
ConclusionNuméro de notice : 26872 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Mémoire de projet pluridisciplinaire Organisme de stage : Laboratoire de télédétection de l’Institut Jacob Blaustein (Université Ben-Gourion du Négev) Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101702 Documents numériques
peut être téléchargé
Preparation of the VENµS satellite data over Israel for the input into the GRASP data treatment algorithm - pdf auteurAdobe Acrobat PDFRobust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features / Bai Zhu in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
![]()
[article]
Titre : Robust registration of aerial images and LiDAR data using spatial constraints and Gabor structural features Type de document : Article/Communication Auteurs : Bai Zhu, Auteur ; Yuanxin Ye, Auteur ; Liang Zhou, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 129 - 147 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] correction géométrique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] élément d'orientation externe
[Termes IGN] enregistrement de données
[Termes IGN] filtre de Gabor
[Termes IGN] image aérienne
[Termes IGN] recalage d'image
[Termes IGN] semis de points
[Termes IGN] SIFT (algorithme)
[Termes IGN] structure-from-motionRésumé : (auteur) Co-registration of aerial imagery and Light Detection and Ranging (LiDAR) data is quite challenging because the different imaging mechanisms produce significant geometric and radiometric distortions between the two multimodal data sources. To address this problem, we propose a robust and effective coarse-to-fine registration method that is conducted in two stages utilizing spatial constraints and Gabor structural features. In the first stage, the LiDAR point cloud data is transformed into an intensity map that is used as the reference image. Then, coarse registration is completed by designing a partition-based Features from Accelerated Segment Test (FAST) operator to extract the uniformly distributed interest points in the aerial images and thereafter performing a local geometric correction based on the collinearity equations using the exterior orientation parameters (EoPs). The coarse registration aims to provide a reliable spatial geometry relationship for the subsequent fine registration and is designed to eliminate rotation and scale changes, as well as making only a few translation differences exist between the images. In the second stage, a novel feature descriptor called multi-Scale and multi-Directional Features of odd Gabor (SDFG) is first built to capture the multi-scale and multi-directional structural properties of the images. Then, the three-dimensional (3D) phase correlation (PC) of the SDFG descriptor is established to detect the control points (CPs) between the aerial and LiDAR intensity image in the frequency domain, where the image matching is accelerated by the 3D Fast Fourier Transform (FFT) technique. Finally, the obtained CPs not only are employed to refine the EoPs, but also are used to achieve the fine registration of the aerial images and LiDAR data. We conduct experiments to verify the robustness of the proposed registration method using three sets of aerial images and LiDAR data with different scene coverage. Experimental results show that the proposed method is robust to geometric distortions and radiometric changes. Moreover, it achieves the registration accuracy of less than 2 pixels for all cases, which outperforms the current four state-of-the-art methods, demonstrating its superior registration performance. Numéro de notice : A2021-773 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.09.010 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.09.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98830
in ISPRS Journal of photogrammetry and remote sensing > Vol 181 (November 2021) . - pp 129 - 147[article]The polar epipolar rectification / François Darmon in IPOL Journal, Image Processing On Line, vol 11 (2021)
![]()
[article]
Titre : The polar epipolar rectification Type de document : Article/Communication Auteurs : François Darmon, Auteur ; Pascal Monasse, Auteur Année de publication : 2021 Article en page(s) : pp 56 - 75 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] couple stéréoscopique
[Termes IGN] disparité
[Termes IGN] géométrie épipolaire
[Termes IGN] orthorectification
[Termes IGN] points homologuesRésumé : (auteur) Epipolar rectification of a stereo pair is the process of resampling a pair of stereo images so that the apparent motion of corresponding points is horizontal. This is an important preliminary step in depth estimation, substituting depth by disparity estimation. Most methods rely on a perspective transform of both images, which has the advantage to simulate a different attitude of the pinhole cameras. A limitation is that when an epipole is inside the image domain, it has to be sent to infinity by the perspective transform, producing a strong distortion. On the contrary, relying on a polar transform centered at the epipole provides a method applicable universally to a pair of pinhole camera views. We present in detail the algorithm, filling in the information important for its implementation and missing in published articles. Numéro de notice : A2021-782 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5201/ipol.2021.328 Date de publication en ligne : 02/03/2021 En ligne : https://doi.org/10.5201/ipol.2021.328 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98937
in IPOL Journal, Image Processing On Line > vol 11 (2021) . - pp 56 - 75[article]Spectral reflectance estimation of UAS multispectral imagery using satellite cross-calibration method / Saket Gowravaram in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)
![]()
[article]
Titre : Spectral reflectance estimation of UAS multispectral imagery using satellite cross-calibration method Type de document : Article/Communication Auteurs : Saket Gowravaram, Auteur ; Haiyang Chao, Auteur ; Andrew Molthan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 735 - 746 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aéronef
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] étalonnage croisé
[Termes IGN] forêt
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-8
[Termes IGN] image multibande
[Termes IGN] image proche infrarouge
[Termes IGN] Kansas (Etats-Unis ; état)
[Termes IGN] orthoimage
[Termes IGN] orthorectification
[Termes IGN] prairie
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance spectraleRésumé : (Auteur) This paper introduces a satellite-based cross-calibration (SCC) method for spectral reflectance estimation of unmanned aircraft system (UAS) multispectral imagery. The SCC method provides a low-cost and feasible solution to convert high-resolution UAS images in digital numbers (DN) to reflectance when satellite data is available. The proposed method is evaluated using a multispectral data set, including orthorectified KHawk UAS DN imagery and Landsat 8 Operational Land Imager Level-2 surface reflectance (SR) data over a forest/grassland area. The estimated UAS reflectance images are compared with the National Ecological Observatory Network's imaging spectrometer (NIS) SR data for validation. The UAS reflectance showed high similarities with the NIS data for the near-infrared and red bands with Pearson's r values being 97 and 95.74, and root-mean-square errors being 0.0239 and 0.0096 over a 32-subplot hayfield. Numéro de notice : A2021-676 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00091R2 En ligne : https://doi.org/10.14358/PERS.20-00091R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98863
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 10 (October 2021) . - pp 735 - 746[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021101 SL Revue Centre de documentation Revues en salle Disponible Apport des méthodes : imagerie drone, LiDAR et imagerie hyperspectrale pour l’étude du littoral vendéen / Mathis Baudis (2021)
PermalinkPermalinkTélédétection synchronisée hyperspectrale et LiDAR à retour d’onde complet : application au suivi des littoraux sableux de la région Pays-de-la-Loire / Giovanni Frati (2021)
PermalinkA generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery / Niangang Jiao in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkAmbiguous use of geographical information systems for the rectification of large-scale geometric maps / Anders Wästfelt in Cartographic journal (the), Vol 57 n° 3 (August 2020)
PermalinkPedestrian network generation based on crowdsourced tracking data / Xue Yang in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
PermalinkSome thoughts on measuring earthquake deformation using optical imagery / Min Huang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
PermalinkPermalinkLe plug-in ACYOTB : l'orthorectification open source de précision / Valerio Baiocchi in Géomatique expert, n° 132-133 (janvier - septembre 2020)
PermalinkGeometric accuracy improvement of WorldView‐2 imagery using freely available DEM data / Mateo Gašparović in Photogrammetric record, vol 34 n° 167 (September 2019)
Permalink