Descripteur


Etendre la recherche sur niveau(x) vers le bas
Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia / Peter Kitin in Annals of Forest Science [en ligne], vol 78 n° 2 (June 2021)
![]()
[article]
Titre : Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) of wood reveals distinct chemical signatures of two species of Afzelia Type de document : Article/Communication Auteurs : Peter Kitin, Auteur ; Edgard Espinoza, Auteur ; Hans Beeckman, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : Article 31 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] abattage (sylviculture)
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] apprentissage non-dirigé
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] Fabaceae
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] identification de plantes
[Termes descripteurs IGN] spectrométrie
[Termes descripteurs IGN] taxinomie
[Termes descripteurs IGN] temps réelRésumé : (Auteur) Distinct chemical fingerprints of the wood of Afzelia pachyloba and A. bipindensis demonstrated an effective method for identifying these two commercially important species. Direct analysis in real-time (DART) time-of-flight mass spectrometry (TOFMS) allowed high-throughput examination of chemotypes with vast potential in taxonomic, ecological, and forensic research of wood. Numéro de notice : A2021-327 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-01024-1 date de publication en ligne : 31/03/2021 En ligne : https://doi.org/10.1007/s13595-020-01024-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97488
in Annals of Forest Science [en ligne] > vol 78 n° 2 (June 2021) . - Article 31[article]Automatic detection and classification of low-level orographic precipitation processes from space-borne radars using machine learning / Malarvizhi Arulraj in Remote sensing of environment, vol 257 (May 2021)
![]()
[article]
Titre : Automatic detection and classification of low-level orographic precipitation processes from space-borne radars using machine learning Type de document : Article/Communication Auteurs : Malarvizhi Arulraj, Auteur ; Ana P. Baros, Auteur Année de publication : 2021 Article en page(s) : n° 112355 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] Appalaches
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] bande S
[Termes descripteurs IGN] classification automatique
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] image GPM
[Termes descripteurs IGN] orographie
[Termes descripteurs IGN] précipitationRésumé : (auteur) Ground-clutter is a significant cause of missed-detection and underestimation of precipitation in complex terrain from space-based radars such as the Global Precipitation Measurement Mission (GPM) Dual-frequency Precipitation Radar (DPR). This research proposes an Artificial Intelligence (AI) framework consisting of a precipitation detection model (PDM) and a precipitation regime classification model (PCM) to improve orographic precipitation retrievals from GPM-DPR using machine learning. The PDM is a Random Forest Classifier using GPM Microwave Imager (GMI) calibrated brightness temperatures (Tbs) and low-level precipitation mixing ratios from the High-Resolution Rapid Refresh (HRRR) analysis as inputs. The PCM is a Convolutional Neural Network that predicts the precipitation regime class, defined independently based on quantitative features of ground-based radar reflectivity profiles, using GPM DPR Ku-band (Ku-PR) reflectivity profiles and GMI Tbs. The AI framework is demonstrated for warm-season precipitation in the Southern Appalachian Mountains over. Numéro de notice : A2021-279 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112355 date de publication en ligne : 19/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112355 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97372
in Remote sensing of environment > vol 257 (May 2021) . - n° 112355[article]Forest height retrieval using P-band airborne multi-baseline SAR data: A novel phase compensation method / Hongliang Lu in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
![]()
[article]
Titre : Forest height retrieval using P-band airborne multi-baseline SAR data: A novel phase compensation method Type de document : Article/Communication Auteurs : Hongliang Lu, Auteur ; Heng Zhang, Auteur ; Huaitao Fan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 99 - 118 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] bande P
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] compensation
[Termes descripteurs IGN] données TomoSAR
[Termes descripteurs IGN] erreur de mesure
[Termes descripteurs IGN] erreur de phase
[Termes descripteurs IGN] Guyane (département français)
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] ligne de base
[Termes descripteurs IGN] polarisation
[Termes descripteurs IGN] tomographie radar
[Termes descripteurs IGN] triangulation de DelaunayRésumé : (auteur) Synthetic aperture radar (SAR) tomography (TomoSAR) has been well-established for three-dimensional (3-D) information extraction of forests using the multi-baseline SAR data stacks. The multi-baseline SAR data stacks can be acquired by spaceborne and airborne SAR systems, but for forest scenarios, the data stacks acquired by the airborne SAR system are mostly used. Such a data stack has the advantages of short revisiting time and weak temporal decorrelation. However, due to the baseline errors (caused by the residual platform motion and the measurement errors of the navigation instruments), phase errors (PEs) will occur. PEs are independent of one track to the other, resulting in spreading and defocusing in tomographic imaging. In this paper, we proposed a novel phase compensation method named NC-PGA, which combines the methods of network construction (NC) and phase gradient autofocus (PGA) to estimate and compensate the PEs. The NC method uses the Delaunay triangulation network and beamforming to obtain an accurate elevation estimate of the selected permanent scatterers, which can be used as the prior information for subsequent processing to overcome the shortcomings of the PGA method in PEs estimation. The PGA method uses the spatial invariance of PEs in a limited area to compensate for the PE of each track. The applicability of the NC-PGA method is demonstrated using simulated data and real data. The real data contains two data stacks. The one is acquired by a full-polarization P-band airborne SAR system (developed independently by our project research team) over the study area in Saihanba Forest Farm in Hebei, China. The other one is acquired by ONERA SETHI airborne system over Paracou, French Guiana, in the frame of the European Space Agency’s campaign TropiSAR. We select a test area in the study area and successfully retrieve the height of the forest, and use LiDAR data for results validation and evaluation. Numéro de notice : A2021-271 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.022 date de publication en ligne : 14/03/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.022 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97329
in ISPRS Journal of photogrammetry and remote sensing > vol 175 (May 2021) . - pp 99 - 118[article]Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa / Tomoaki Miura in Remote sensing of environment, vol 257 (May 2021)
![]()
[article]
Titre : Validation and analysis of Terra and Aqua MODIS, and SNPP VIIRS vegetation indices under zero vegetation conditions: A case study using Railroad Valley Playa Type de document : Article/Communication Auteurs : Tomoaki Miura, Auteur ; Charlotte Z. Smith, Auteur ; Hiroki Yoshioka, Auteur Année de publication : 2021 Article en page(s) : n° 112344 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Enhanced vegetation index
[Termes descripteurs IGN] image Aqua-MODIS
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image Terra-MODIS
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] Nevada (Etats-Unis)
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] réflectance du solRésumé : (auteur) Spectral vegetation index (VI) time series data from coarse resolution satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), have been utilized in studying vegetation dynamics. Numerous studies have evaluated how well VI products capture variations in vegetation biophysical or physiological conditions. Equally important is to evaluate VI products over “zero vegetation” surfaces consisting of soils, litters, and/or rocks, as they define the lower bound for vegetation detection. VIs, however, vary over zero vegetation surfaces as a function of soil moisture content and surface roughness. In this study, we evaluated the behavior of VIs from Terra MODIS (T-MODIS), Aqua MODIS (A-MODIS), and Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-VIIRS) at Railroad Valley Playa, Nevada for a period from April 2013 to September 2019. The playa is a dried lakebed devoid of vegetation throughout the year. Long-term in situ reflectance measurements acquired over the 1 km-by−1 km Radiometric Calibration Test Site (RadCaTS) located on the playa were obtained from the Radiometric Calibration Network (RadCalNet) portal and used as a reference. Three VIs were analyzed, including the normalized difference VI (NDVI), enhanced VI (EVI), and two-band EVI (EVI2). RadCaTS NDVI, EVI, and EVI2 of the playa surface increased and decreased occasionally for the time period examined in this study, and the satellite NDVIs, EVIs, and EVI2s had comparable temporal signatures to the RadCaTS counterparts. T-MODIS and A-MODIS NDVI and EVI2 values were comparable to the RadCaTS counterparts, whereas T-MODIS and A-MODIS EVI values were lower than the RadCaTS counterparts by ~0.006 and ~ 0.01 EVI units, respectively. All the three VIs of S-VIIRS were consistently higher than their RadCaTS counterparts by ~0.008 VI units, due to the higher near-infrared (NIR) reflectances of S-VIIRS than the RadCaTS NIR reflectance. The red and NIR, and red and blue reflectances each formed linear relationships (i.e., soil lines) for each of the three sensors. Variations in reflectance due to surface conditions and observation geometries all appeared as variations along these soil lines. The satellite red-NIR soil lines were comparable to the RadCaTS counterparts, whereas the satellite red-blue soil lines had steeper slopes than the RadCaTS counterparts due to a negative bias in the satellite blue reflectances. This translated into the T-MODIS and A-MODIS EVI behaviors different from those depicted by RadCaTS EVI, and the satellite NDVI and EVI2 behaving more comparably with the RadCaTS counterparts and across the three sensors than the satellite EVI. Numéro de notice : A2021-277 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112344 date de publication en ligne : 19/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112344 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97370
in Remote sensing of environment > vol 257 (May 2021) . - n° 112344[article]Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters / Quinten Vanhellemont in Remote sensing of environment, Vol 256 (April 2020)
![]()
[article]
Titre : Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters Type de document : Article/Communication Auteurs : Quinten Vanhellemont, Auteur ; Kevin Ruddick, Auteur Année de publication : 2021 Article en page(s) : n° 112284 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Belgique
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] eaux côtières
[Termes descripteurs IGN] image Sentinel-OLCI
[Termes descripteurs IGN] particule
[Termes descripteurs IGN] rayonnement infrarouge
[Termes descripteurs IGN] réflectance
[Termes descripteurs IGN] turbidité des eauxRésumé : (auteur) The performance of different atmospheric correction algorithms for the Ocean and Land Colour Instrument (OLCI) on board of Sentinel-3 (S3) is evaluated for retrieval of water-leaving radiance reflectance, and derived parameters chlorophyll-a concentration and turbidity in turbid coastal waters in the Belgian Coastal Zone (BCZ). This is performed using in situ measurements from an autonomous pan-and-tilt hyperspectral radiometer system (PANTHYR). The PANTHYR provides validation data for any satellite band between 400 and 900 nm, with the deployment in the BCZ of particular interest due to the wide range of observed Near-InfraRed (NIR) reflectance. The Dark Spectrum Fitting (DSF) atmospheric correction algorithm is adapted for S3/OLCI processing in ACOLITE, and its performance and that of 5 other processing algorithms (L2-WFR, POLYMER, C2RCC, SeaDAS, and SeaDAS-ALT) is compared to the in situ measured reflectances. Water turbidities across the matchups in the Belgian Coastal Zone are about 20–100 FNU, and the overall performance is best for ACOLITE and L2-WFR, with the former providing lowest relative (Mean Absolute Relative Difference, MARD 7–27%) and absolute errors (Mean Average Difference, MAD -0.002, Root Mean Squared Difference, RMSD 0.01–0.016) in the bands between 442 and 681 nm. L2-WFR provides the lowest errors at longer NIR wavelengths (754–885 nm). The algorithms that assume a water reflectance model, i.e. POLYMER and C2RCC, are at present not very suitable for processing imagery over the turbid Belgian coastal waters, with especially the latter introducing problems in the 665 and 709 nm bands, and hence the chlorophyll-a and turbidity retrievals. This may be caused by their internal model and/or training dataset not being well adapted to the waters encountered in the BCZ. The 1020 nm band is used most frequently by ACOLITE/DSF for the estimation of the atmospheric path reflectance (67% of matchups), indicating its usefulness for turbid water atmospheric correction. Turbidity retrieval using a single band algorithm showed good performance for L2-WFR and ACOLITE compared to PANTHYR for e.g. the 709 nm band (MARD 15 and 17%), where their reflectances were also very close to the in situ observations (MARD 11%). For the retrieval of chlorophyll-a, all methods except C2RCC gave similar performance, due to the RedEdge band-ratio algorithm being robust to typical spectrally flat atmospheric correction errors. C2RCC does not retain the spectral relationship in the Red and RedEdge bands, and hence its chlorophyll-a concentration retrieval is not at all reliable in Belgian coastal waters. L2-WFR and ACOLITE show similar performance compared to in situ radiometry, but due to the assumption of spatially consistent aerosols, ACOLITE provides less noisy products. With the superior performance of ACOLITE in the 490–681 nm wavelength range, and smoother output products, it can be recommended for processing of S3/OLCI data in turbid waters similar to those encountered in the BCZ. The ACOLITE processor for OLCI and the in situ matchup dataset used here are made available under an open source license. Numéro de notice : A2021-193 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112284 date de publication en ligne : 12/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112284 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97116
in Remote sensing of environment > Vol 256 (April 2020) . - n° 112284[article]Automatic atmospheric correction for shortwave hyperspectral remote sensing data using a time-dependent deep neural network / Jian Sun in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
PermalinkCloud detection from paired CrIS water vapor and CO₂ channels using machine learning techniques / Miao Tian in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkExtraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data / Xiao-Ming Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkImpact of the third frequency GNSS pseudorange and carrier phase observations on rapid PPP convergences / Jiang Guo in GPS solutions, vol 25 n° 2 (April 2021)
PermalinkLeaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data / Vijay Pratap Yadav in Geocarto international, vol 36 n° 7 ([01/04/2021])
PermalinkMulti-GNSS real-time precise clock estimation considering the correction of inter-satellite code biases / Liang Chen in GPS solutions, vol 25 n° 2 (April 2021)
PermalinkTemporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands / Emmanuelle Vaudour in International journal of applied Earth observation and geoinformation, vol 96 (April 2021)
PermalinkTime-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine / Dong Liang in Remote sensing of environment, Vol 256 (April 2020)
PermalinkApplication of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring / Gopal Krishna in Geocarto international, vol 36 n° 5 ([15/03/2021])
PermalinkEarly detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS) / Langning Huo in Remote sensing of environment, Vol 255 (March 2021)
PermalinkA soil texture categorization mapping from empirical and semi-empirical modelling of target parameters of synthetic aperture radar / Shoba Periasamy in Geocarto international, vol 36 n° 5 ([15/03/2021])
PermalinkCluster-based empirical tropospheric corrections applied to InSAR time series analysis / Kyle Dennis Murray in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkON GLONASS pseudo-range inter-frequency bias solution with ionospheric delay modeling and the undifferenced uncombined PPP / Zheng Zhang in Journal of geodesy, vol 95 n° 3 (March 2021)
PermalinkSaline-soil deformation extraction based on an improved time-series InSAR approach / Wei Xiang in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
PermalinkModelling potential density of natural regeneration of European oak species (Quercus robur L., Quercus petraea (Matt.) Liebl.) depending on the distance to the potential seed source: Methodological approach for modelling dispersal from inventory data at forest enterprise level / Maximilian Axer in Forest ecology and management, vol 482 ([15/02/2021])
PermalinkCorrentropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing / Xiaorun Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkEmotional habitat: mapping the global geographic distribution of human emotion with physical environmental factors using a species distribution model / Yizhuo Li in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
PermalinkForest height estimation using a single-pass airborne L-band polarimetric and interferometric SAR system and tomographic techniques / Yue Huang in Remote sensing, Vol 13 n° 3 (February 2021)
PermalinkG-band radar for humidity and cloud remote sensing / Ken B. Cooper in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkA highly adaptable method for GNSS cycle slip detection and repair based on Kalman filter / Xianwen Yu in Survey review, Vol 53 n° 377 (February 2021)
Permalink