Descripteur
Documents disponibles dans cette catégorie (339)



Etendre la recherche sur niveau(x) vers le bas
A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data / Linhua Ma in Science of the total environment, vol 859 n° 1 (February 2023)
![]()
[article]
Titre : A GIS-based method for modeling methane emissions from paddy fields by fusing multiple sources of data Type de document : Article/Communication Auteurs : Linhua Ma, Auteur ; Yuanlai Cui, Auteur ; Bo Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 159917 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Chine
[Termes IGN] Corée
[Termes IGN] données multisources
[Termes IGN] Etats-Unis
[Termes IGN] humidité du sol
[Termes IGN] image à haute résolution
[Termes IGN] image infrarouge
[Termes IGN] Italie
[Termes IGN] méthane
[Termes IGN] modélisation
[Termes IGN] réflectance du sol
[Termes IGN] rizière
[Termes IGN] système d'information géographique
[Termes IGN] variation saisonnièreRésumé : (auteur) Quantification of regional methane (CH4) gas emission in the paddy fields is critical under climate warming. Mechanism models generally require numerous parameters while empirical models are too coarse. Based on the mechanism and structure of the widely used model CH4MOD, a GIS-based Regional CH4 Emission Calculation (GRMC) method was put forward by introducing multiple sources of remote sensing images, including MOD09A1, MOD11A2, MOD15A2H as well as local water management standards. The stress of soil moisture condition (f(water)) on CH4 emissions was quantified by calculating the redox potential (Eh) from days after flooding or falling dry. The f(water)-t curve was calculated under different exogenous organic matter addition. Combining the f(water)-t curve with local water management standards, the seasonal variation of f(water) was obtained. It was proven that f(water) was effective in reflecting the regulation role of soil moisture condition. The GRMC was tested at four Eddy Covariance (EC) sites: Nanchang (NC) in China, Twitchell (TWT) in the USA, Castellaro (CAS) in Italy and Cheorwon (CRK) in Korea and has been proven to well track the seasonal dynamics of CH4 emissions with R2 ranges of 0.738–0.848, RMSE ranges of 31.94–149.22 mg C/m2d and MBE ranges of −66.42- -14.79 mg C/m2d. The parameters obtained in Nanchang (NC) site in China were then applied to the Ganfu Plain Irrigation System (GFPIS), a typical rice planting area of China, to analyse the spatial-temporal variations of CH4 emissions. The total CH4 emissions of late rice in the GFPIS from 2001 to 2013 was in the range of 14.47–20.48 (103 t CH4-C). Ts caused spatial variation of CH4 production capacity, resulting in the spatial variability of CH4 emissions. Overall, the GRMC is effective in obtaining CH4 emissions from rice fields on a regional scale. Numéro de notice : A2023-015 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.scitotenv.2022.159917 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.159917 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102133
in Science of the total environment > vol 859 n° 1 (February 2023) . - n° 159917[article]Above ground biomass estimation from UAV high resolution RGB images and LiDAR data in a pine forest in Southern Italy / Mauro Maesano in iForest, biogeosciences and forestry, vol 15 n° 6 (December 2022)
![]()
[article]
Titre : Above ground biomass estimation from UAV high resolution RGB images and LiDAR data in a pine forest in Southern Italy Type de document : Article/Communication Auteurs : Mauro Maesano, Auteur ; Giovanni Santopuoli, Auteur ; Federico Valerio Moresi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 451-457 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] biomasse aérienne
[Termes IGN] Calabre
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] gestion forestière durable
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] régression
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) Knowledge of forest biomass is an essential parameter for managing the forest in a sustainable way, as forest biomass data availability and reliability are necessary for forestry and forest planning, but also for the carbon market as well as to support the local economy in the mountain and inner areas. However, the accurate quantification of the above-ground biomass (AGB) is still a challenge both at the local and global levels. The use of remote sensing techniques with Unmanned Aerial Vehicle (UAV) platforms can be an excellent trade-off between resolution, scale, and frequency data of AGB estimation. In this study, we evaluated the combined use of RGB images from UAV, LiDAR data and ground truth data to estimate AGB in a forested watershed in Southern Italy. A low-cost AGB estimation method was adopted using a commercial fixed-wing drone equipped with an RGB camera, combined with the canopy information derived by LiDAR and validated by field data. Two modelling methods (stepwise regression, SR and random forest, RF) were used to estimate forest AGB. The output was an accurate maps of AGB for each model. The RF model showed better accuracy than the Steplm model, and the R2 increased from 0.81 to 0.86, and the RMSE and MAE values were decreased from 45.5 to 31.7 Mg ha-1 and from 34.2 to 22.1 Mg ha-1 respectively. We demonstrated that by increasing the computing efficiency through a machine learning algorithm, readily available images can be used to obtain satisfactory results, as proven by the accuracy of the Random forest above biomass estimation model. Numéro de notice : A2022-903 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3832/ifor3781-015 Date de publication en ligne : 03/11/2022 En ligne : https://doi.org/10.3832/ifor3781-015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102299
in iForest, biogeosciences and forestry > vol 15 n° 6 (December 2022) . - pp 451-457[article]Wall-to-wall mapping of forest biomass and wood volume increment in Italy / Francesca Giannetti in Forests, vol 13 n° 12 (December 2022)
![]()
[article]
Titre : Wall-to-wall mapping of forest biomass and wood volume increment in Italy Type de document : Article/Communication Auteurs : Francesca Giannetti, Auteur ; Gherardo Chirici, Auteur ; Elia Vangi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1989 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] biomasse aérienne
[Termes IGN] carte thématique
[Termes IGN] écosystème forestier
[Termes IGN] forêt méditerranéenne
[Termes IGN] gestion forestière
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Italie
[Termes IGN] puits de carbone
[Termes IGN] volume en bois
[Vedettes matières IGN] ForesterieRésumé : (auteur) Several political initiatives aim to achieve net-zero emissions by the middle of the twenty-first century. In this context, forests are crucial as a carbon sink to store unavoidable emissions. Assessing the carbon sequestration potential of forest ecosystems is pivotal to the availability of accurate forest variable estimates for supporting international reporting and appropriate forest management strategies. Spatially explicit estimates are even more important for Mediterranean countries such as Italy, where the capacity of forests to act as sinks is decreasing due to climate change. This study aimed to develop a spatial approach to obtain high-resolution maps of Italian forest above-ground biomass (ITA-BIO) and current annual volume increment (ITA-CAI), based on remotely sensed and meteorological data. The ITA-BIO estimates were compared with those obtained with two available biomass maps developed in the framework of two international projects (i.e., the Joint Research Center and the European Space Agency biomass maps, namely, JRC-BIO and ESA-BIO). The estimates from ITA-BIO, JRC-BIO, ESA-BIO, and ITA-CAI were compared with the 2nd Italian NFI (INFC) official estimates at regional level (NUT2). The estimates from ITA-BIO are in good agreement with the INFC estimates (R2 = 0.95, mean difference = 3.8 t ha−1), while for JRC-BIO and ESA-BIO, the estimates show R2 of 0.90 and 0.70, respectively, and mean differences of 13.5 and of 21.8 t ha−1 with respect to the INFC estimates. ITA-CAI estimates are also in good agreement with the INFC estimates (R2 = 0.93), even if they tend to be slightly biased. The produced maps are hosted on a web-based forest resources management Decision Support System developed under the project AGRIDIGIT (ForestView) and represent a key element in supporting the new Green Deal in Italy, the European Forest Strategy 2030 and the Italian Forest Strategy. Numéro de notice : A2022-864 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article DOI : 10.3390/f13121989 Date de publication en ligne : 24/11/2022 En ligne : https://doi.org/10.3390/f13121989 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102156
in Forests > vol 13 n° 12 (December 2022) . - n° 1989[article]Assessing logging residues availability for energy production by using forest management plans data and geographic information system (GIS) / Luca Nonini in European Journal of Forest Research, vol 141 n° 5 (October 2022)
![]()
[article]
Titre : Assessing logging residues availability for energy production by using forest management plans data and geographic information system (GIS) Type de document : Article/Communication Auteurs : Luca Nonini, Auteur ; Calogero Schillaci, Auteur ; Marco Fiala, Auteur Année de publication : 2022 Article en page(s) : pp 959 - 977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] données localisées
[Termes IGN] estimation statistique
[Termes IGN] exploitation forestière
[Termes IGN] gestion forestière
[Termes IGN] Italie
[Termes IGN] planification
[Termes IGN] système d'information géographiqueRésumé : (auteur) The aim of the work was to quantify the mass of logging residues (branches and tops; t yr−1 dry matter, DM) for energy generation starting from Forest Management Plans (FMP) data. The methodology was applied to public stands of an Italian district (area: 3.60 × 104 ha; period: 2009–2018). Compared to the previous preliminary analysis, the potentially available residues were computed considering forest accessibility and road traversability, by combining FMPs data with a geographic information system (GIS). New issues that were assessed here were: (i) representation of stands consisting of multiple disconnected parts; (ii) calculation of producible residues by using different values of biomass expansion factors (Scenario 1, S1; Scenario 2, S2). The potentially available residues computed for the analyzed period were used to quantify the current sustainable supply. Then, the potentially generated heat (thermal energy, TE; GJ yr−1) and electricity (EE; GJ yr−1), and the potentially avoided CO2 emissions into the atmosphere (EM; t yr−1 CO2) related to the final combustion process were computed by assuming that the current supply of residues was used as woodchips in a local centralized heating plant currently operating. For both S1 and S2, the large difference between the potentially producible and the potentially available residues demonstrated that geodata are essential for reliable estimations. Moreover, as the required information for the GIS analysis can be easily found in databases made available by forestry authorities, the proposed approach can be applied also to other areas; this could be helpful to support local decision-makers in defining sustainable practices for residues recovery. Numéro de notice : A2022-760 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article DOI : 10.1007/s10342-022-01484-2 Date de publication en ligne : 22/08/2022 En ligne : https://doi.org/10.1007/s10342-022-01484-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101772
in European Journal of Forest Research > vol 141 n° 5 (October 2022) . - pp 959 - 977[article]Riparian ecosystems mapping at fine scale: a density approach based on multi-temporal UAV photogrammetric point clouds / Elena Belcore in Remote sensing in ecology and conservation, vol 8 n° 5 (October 2022)
![]()
[article]
Titre : Riparian ecosystems mapping at fine scale: a density approach based on multi-temporal UAV photogrammetric point clouds Type de document : Article/Communication Auteurs : Elena Belcore, Auteur ; Melissa Latella, Auteur Année de publication : 2022 Article en page(s) : pp 644 - 655 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte de la végétation
[Termes IGN] densité de la végétation
[Termes IGN] détection d'objet
[Termes IGN] forêt ripicole
[Termes IGN] houppier
[Termes IGN] image captée par drone
[Termes IGN] Italie
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] orthophotoplan numérique
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) In recent years, numerous directives worldwide have addressed the conservation and restoration of riparian corridors, activities that rely on continuous vegetation mapping to understand its volumetric features and health status. Mapping riparian corridors requires not only fine-scale resolution but also the coverage of relatively large areas. The use of Unmanned Aerial Vehicles (UAV) allows for meeting both conditions, although the cost-effectiveness of their use is highly influenced by the type of sensor mounted on them. Few works have so far investigated the use of photogrammetric sensors for individual tree crown detection, despite being cheaper than the most common Light Detection and Ranging (LiDAR) ones. This work aims to improve the individual crown detection from UAV-photogrammetric datasets in a two fold way. Firstly, the effectiveness of a new approach that has already achieved interesting results in LiDAR applications was tested for photogrammetric point clouds. The test was carried out by comparing the accuracy achieved by the new approach, which is based on the point density features of the analysed dataset, with those related to the more common local maxima and textural methods. The results indicated the potentiality of the density-based method, which achieved accuracy values (0.76F-score) consistent with the traditional methods (0.49–0.80F-score range) but was less affected by under- and over-fitting. Secondly, the potential improvement of working on intra-annual multi-temporal datasets was assessed by applying the density-based approach to seven different scenarios, three of which were constituted by single-epoch datasets and the remaining given by the joining of the others. The F-score increased from 0.67 to 0.76 when passing from single- to multi-epoch datasets, aligning with the accuracy achieved by the new method when applied to LiDAR data. The results demonstrate the potential of multi-temporal acquisitions when performing individual crown detection from photogrammetric data. Numéro de notice : A2022-879 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1002/rse2.267 Date de publication en ligne : 22/03/2022 En ligne : https://doi.org/10.1002/rse2.267 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102193
in Remote sensing in ecology and conservation > vol 8 n° 5 (October 2022) . - pp 644 - 655[article]Integrating post-processing kinematic (PPK) structure-from-motion (SfM) with unmanned aerial vehicle (UAV) photogrammetry and digital field mapping for structural geological analysis / Daniele Cirillo in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)
PermalinkMultiscale assimilation of Sentinel and Landsat data for soil moisture and Leaf Area Index predictions using an ensemble-Kalman-filter-based assimilation approach in a heterogeneous ecosystem / Nicola Montaldo in Remote sensing, vol 14 n° 14 (July-2 2022)
PermalinkSignificant loss of ecosystem services by environmental changes in the Mediterranean coastal area / Adriano Conte in Forests, vol 13 n° 5 (May 2022)
PermalinkUnveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations / Francesco Solano in Ecological indicators, vol 138 (May 2022)
PermalinkMonitoring coastal vulnerability by using DEMs based on UAV spatial data / Antonio Minervino Amodio in ISPRS International journal of geo-information, vol 11 n° 3 (March 2022)
PermalinkAn open science and open data approach for the statistically robust estimation of forest disturbance areas / Saverio Francini in International journal of applied Earth observation and geoinformation, vol 106 (February 2022)
PermalinkMapping burn severity in the western Italian Alps through phenologically coherent reflectance composites derived from Sentinel-2 imagery / Donato Morresi in Remote sensing of environment, vol 269 (February 2022)
PermalinkGuidelines for the management of cultural heritage using 3D models for the insertion of heterogeneous data / Gianna Bertacchi (2022)
PermalinkItalian National Forest Inventory: Methods and results of the third survey / Patrizia Gasparini (2022)
PermalinkLandslide evolution pattern revealed by multi-temporal DSMs obtained from historical aerial images / Michele Santangelo (2022)
Permalink