Descripteur
Documents disponibles dans cette catégorie (105)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Impact of offsets on assessing the low-frequency stochastic properties of geodetic time series / Kevin Gobron in Journal of geodesy, vol 96 n° 7 (July 2022)
[article]
Titre : Impact of offsets on assessing the low-frequency stochastic properties of geodetic time series Type de document : Article/Communication Auteurs : Kevin Gobron, Auteur ; Paul Rebischung , Auteur ; Olivier de Viron, Auteur ; Alain Demoulin, Auteur ; Michel Van Camp, Auteur Année de publication : 2022 Projets : 3-projet - voir note / Article en page(s) : n° 46 Note générale : bibliographie
This study has been financially supported by the Direction Générale de l’Armement (DGA), the Nouvelle-Aquitaine region, and the Centre National des Etudes Spatiales (CNES) as an application of the geodesy missions. This research was also supported by the Brain LASUGEO project entitled “monitoring LAnd SUbsidence caused by Groundwater exploitation through gEOdetic measurements” funded by the Belgian Sciences Policy.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] analyse de variance
[Termes IGN] bruit blanc
[Termes IGN] fréquence
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modèle de Gauss-Markov
[Termes IGN] modèle stochastique
[Termes IGN] série temporelle
[Termes IGN] vitesseRésumé : (auteur) Understanding and modelling the properties of the stochastic variations in geodetic time series is crucial to obtain realistic uncertainties for deterministic parameters, e.g., long-term velocities, and helpful in characterizing non-modelled processes. With the increasing span of geodetic time series, it is expected that additional observations would help better understand the low-frequency properties of these stochastic variations. In the meantime, recent studies evidenced that the choice of the functional model for the time series biases the assessment of these low-frequency stochastic properties. In particular, frequent offsets in position time series can hinder the evaluation of the noise level at low frequencies and prevent the detection of possible random-walk-type variability. This study investigates the ability of the Maximum Likelihood Estimation (MLE) method to correctly retrieve low-frequency stochastic properties of geodetic time series in the presence of frequent offsets. We show that part of the influence of offsets reported by previous studies results from the MLE method estimation biases. These biases occur even when all offset epochs are correctly identified and accounted for in the trajectory model. They can cause a dramatic underestimation of deterministic parameter uncertainties. We show that one can avoid biases using the Restricted Maximum Likelihood Estimation (RMLE) method. Yet, even when using the RMLE method or equivalent, adding offsets to the trajectory model inevitably blurs the estimated low-frequency properties of geodetic time series by increasing low-frequency stochastic parameter uncertainties more than other stochastic parameters. Numéro de notice : A2022-519 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-022-01634-9 Date de publication en ligne : 29/06/2022 En ligne : https://doi.org/10.1007/s00190-022-01634-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101072
in Journal of geodesy > vol 96 n° 7 (July 2022) . - n° 46[article]Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction / Jincai Huang in Transactions in GIS, vol 26 n° 2 (April 2022)
[article]
Titre : Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction Type de document : Article/Communication Auteurs : Jincai Huang, Auteur ; Yunfei Zhang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 735 - 754 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Vedettes matières IGN] Géomatique
[Termes IGN] base de données routières
[Termes IGN] carrefour
[Termes IGN] carte routière
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données localisées des bénévoles
[Termes IGN] données routières
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] information sémantique
[Termes IGN] intégration de données
[Termes IGN] navigation automobile
[Termes IGN] vitesse
[Termes IGN] Wuhan (Chine)Résumé : (auteur) The road map is a fundamental part of a spatial data infrastructure (SDI), and is widely applied in navigation, smart transportation, and mobile location services. Recently, with the ubiquity of positioning devices, crowdsourced trajectories have become a significant data resource for road map construction and updating. However, existing trajectory-based methods mainly place emphasis on extracting road geometry features and may ignore continuous updating of road semantic information. Hence, we propose a divide-and-conquer method to construct a spatial-semantic road map by incorporating multiple data sources (e.g., crowdsourced trajectories and geo-tagged data). The proposed method divides road map construction into two sub-tasks, road structure reconstruction and road attributes inference. The road structure reconstruction process starts to partition raw trajectory data into different cliques of roadways and road intersections, and then extracts various targeted road structures by analyzing the turning modes in different trajectory cliques. The road attributes inference process aims to infer three pieces of crucial semantic information about road speeds, turning rules, and road names from crowdsourced trajectories and geo-tagged data. The case studies in Wuhan were examined to illustrate that the proposed method can construct a routable road map with enhanced geometric structures and rich semantic information, providing a beneficial data solution for car navigation and SDI update. Numéro de notice : A2022-364 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12879 Date de publication en ligne : 17/12/2021 En ligne : https://doi.org/10.1111/tgis.12879 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100583
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 735 - 754[article]GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet / Milad Asgarimehr in Remote sensing of environment, vol 269 (February 2022)
[article]
Titre : GNSS reflectometry global ocean wind speed using deep learning: Development and assessment of CyGNSSnet Type de document : Article/Communication Auteurs : Milad Asgarimehr, Auteur ; Caroline Arnold, Auteur ; Tobias Weigel, Auteur ; Chris Ruf, Auteur ; Jens Wickert, Auteur Année de publication : 2022 Article en page(s) : n° 112801 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] apprentissage profond
[Termes IGN] modèle numérique
[Termes IGN] réflectométrie par GNSS
[Termes IGN] réseau neuronal convolutif
[Termes IGN] vent
[Termes IGN] vitesseRésumé : (auteur) GNSS Reflectometry (GNSS-R) is a novel remote sensing technique for the monitoring of geophysical parameters using reflected GNSS signals from the Earth's surface. Ocean wind speed monitoring is the main objective of the recently launched Cyclone GNSS (CyGNSS), a GNSS-R constellation of eight microsatellites, launched in late 2016. In this study, the capability of deep learning, especially, for an operational wind speed data derivation from the measured Delay-Doppler Maps (DDMs) is characterized. CyGNSSnet is based on convolutional layers for the feature extraction from bistatic radar cross section (BRCS) DDMs, along with fully connected layers for processing ancillary technical and higher-level input parameters. The best architecture is determined on a validation set and is evaluated over a completely blind dataset from a different time span than that of the training data to validate the generality of the model for operational usage. After a data quality control, CyGNSSnet results in an RMSE of 1.36 m/s leading to a significant improvement by 28% in comparison to the officially operational retrieval algorithm. The RMSE is the lowest among those seen in the literature for any conventional or machine learning-based algorithm. The benefits of the convolutional layers, the advantages and weaknesses of the model are discussed. CyGNSSnet offers efficient processing of GNSS-R measurements for high-quality global ocean winds. Numéro de notice : A2022-079 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.rse.2021.112801 Date de publication en ligne : 23/11/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112801 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99764
in Remote sensing of environment > vol 269 (February 2022) . - n° 112801[article]Simulation of dispersion effects by considering interactions of pedestrians and bicyclists using an agent space model / Mingwei Liu in Computers, Environment and Urban Systems, vol 91 (January 2022)
[article]
Titre : Simulation of dispersion effects by considering interactions of pedestrians and bicyclists using an agent space model Type de document : Article/Communication Auteurs : Mingwei Liu, Auteur ; Tinggui Chen, Auteur ; Chiaki Matunaga, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101725 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] agent (intelligence artificielle)
[Termes IGN] bicyclette
[Termes IGN] comportement
[Termes IGN] cycliste
[Termes IGN] direction
[Termes IGN] interaction spatiale
[Termes IGN] modèle de dispersion
[Termes IGN] modèle orienté agent
[Termes IGN] navigation pédestre
[Termes IGN] piéton
[Termes IGN] sécurité
[Termes IGN] vitesse
[Termes IGN] zone urbaineRésumé : (auteur) As the number of bicyclists in urban areas continues to increase, the need to realistically model the movement and interactions of bicyclists in mixed urban traffic is rapidly gaining importance. Therefore, this paper presents an agent space model (ASM) to elucidate the movements of bicyclists and pedestrians on shared roads. The ASM model, via simulation, particularly illustrates the dispersion phenomenon observed for non-motorized road users. The mutual interactions and diverse bicyclist and pedestrian properties were also incorporated into this model. The mutual interactions were realised through agent spaces of different sizes in conflict and overtaking behaviours for the following combinations: bicyclist-to-pedestrian, bicyclist-to-bicyclist, pedestrian-to-bicyclist, and pedestrian-to-pedestrian, which were obtained through experiments. The hypothesis test indicated that different agent spaces exist for different types of interactions. The experimental data were used to obtain several variables that describe the elements of road user agent spaces, including longitudinal and lateral distances and the dynamic relationship between the longitudinal distance and speed. The simulation results indicated that with an increase in the number of pedestrians, the maximum capacity decreased and the dispersion degree increased. The following psychological and physiological factors affect the degree of dispersion of bicyclists: travelling speed, reaction time, intensity, probability of selecting the head-on direction, and probability of selecting the right-hand direction. In addition, lane formation was observed in all simulations. The results also demonstrated that dedicated bicycle lanes will significantly reduce the dispersion degree. Moreover, the safety and efficiency effects of different forms of bicycle lanes were analysed from the perspective of the degree of dispersion. The simulation results can provide specific guidelines for understanding the causes of phenomena such as dispersion and lane formation, as well as for studying the traffic dynamics, effects of dedicated bicycle lanes, and macroscopic characteristics according to different bicyclist-pedestrian ratios. Numéro de notice : A2021-826 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101725 Date de publication en ligne : 20/10/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101725 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98947
in Computers, Environment and Urban Systems > vol 91 (January 2022) . - n° 101725[article]GNSS-based statistical analysis of ionospheric anomalies during typhoon landings in Taiwan/Japan / Hai Peng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : GNSS-based statistical analysis of ionospheric anomalies during typhoon landings in Taiwan/Japan Type de document : Article/Communication Auteurs : Hai Peng, Auteur ; Yibin Yao, Auteur ; Jian Kong, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5272 - 5279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] cyclone
[Termes IGN] données GNSS
[Termes IGN] onde de gravité
[Termes IGN] perturbation ionosphérique
[Termes IGN] phase
[Termes IGN] propagation ionosphérique
[Termes IGN] signal GNSS
[Termes IGN] Taïwan
[Termes IGN] teneur totale en électrons
[Termes IGN] vitesseRésumé : (auteur) Using the Global Navigation Satellite System (GNSS) differenced total electron content (dTEC) series, the traveling ionosphere disturbances (TIDs) of 22 typhoons registered in Taiwan/Japan between 2013 and 2016 were studied. The horizontal speed of the first TID during a typhoon landing can be estimated by a two-station method with the ionosphere anomaly indicator in total electron count units (TECUs) (|dTEC| ≥ 0.15 TECU). The horizontal speed of the TIDs was from 155 to 210 m/s and with an average speed of 168.70 m/s. The estimated TID speeds of Typhoons Soudelor (205.93 m/s) and Megi (158.47 m/s) are not consistent with each other, even though they had very similar trajectories when cross through Taiwan Island. Moreover, the propagation velocity of the typhoon ionospheric anomaly showed a significant positive correlation ( r=0.78 , α=0.05 ) with the change rate of the typhoon central air pressure and a negative correlation ( r=−0.52 , α=0.05 ) with the central pressure before landing. Gravity waves were generated by land friction, terrain blocking, and strong wind shear transport energy into the atmosphere from the near surface to the mesosphere and thermosphere, which is the main cause of ionosphere disturbances during typhoon landing. Numéro de notice : A2021-428 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3004829 Date de publication en ligne : 24/08/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3004829 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97784
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 5272 - 5279[article]PermalinkCharacteristics of seasonal variations and noises of the daily double-difference and PPP solutions / Kamil Maciuk in Journal of applied geodesy, vol 15 n° 1 (January 2021)PermalinkDetermination of the under water position of objects by reflectorless total stations / Štefan Rákay in Survey review, vol 53 n°376 (January 2021)PermalinkDynamic mechanism of blown sand hazard formation at the Jieqiong section of the Lhasa–Shigatse railway / Shengbo Xie in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)PermalinkCalibration of frequency shift system of wind imaging interferometer / Yongqiang Sun in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 12 (December 2020)PermalinkThe construction of sound speed field based on back propagation neural network in the global ocean / Junting Wang in Marine geodesy, vol 43 n° 6 (November 2020)PermalinkPast and present ITRF solutions from geophysical perspectives / Laurent Métivier in Advances in space research, vol 65 n° 12 (15 June 2020)PermalinkTraffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning / Yann Méneroux in International Journal of Data Science and Analytics JDSA, vol 10 n° 1 (June 2020)PermalinkAccounting for spatiotemporal correlations of GNSS coordinate time series to estimate station velocities / Clément Benoist in Journal of geodynamics, vol 135 (April 2020)PermalinkINS/GNSS integration using recurrent fuzzy wavelet neural networks / Parisa Doostdar in GPS solutions, vol 24 n° 1 (January 2020)Permalink