Descripteur
Documents disponibles dans cette catégorie (419)



Etendre la recherche sur niveau(x) vers le bas
GIS-KG: building a large-scale hierarchical knowledge graph for geographic information science / Jiaxin Du in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
![]()
[article]
Titre : GIS-KG: building a large-scale hierarchical knowledge graph for geographic information science Type de document : Article/Communication Auteurs : Jiaxin Du, Auteur ; Shaohua Wang, Auteur ; Xinyue Ye, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 873 - 897 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] approche hiérarchique
[Termes IGN] exploration de données
[Termes IGN] ingénierie des connaissances
[Termes IGN] ontologie
[Termes IGN] recherche d'information géographique
[Termes IGN] réseau sémantique
[Termes IGN] traitement du langage naturelRésumé : (auteur) An organized knowledge base can facilitate the exploration of existing knowledge and the detection of emerging topics in a domain. Knowledge about and around Geographic Information Science and its associated system technologies (GIS) is complex, extensive and emerging rapidly. Taking the challenge, we built a GIS knowledge graph (GIS-KG) by (1) merging existing GIS bodies of knowledge to create a hierarchical ontology and then (2) applying deep-learning methods to map GIS publications to the ontology. We conducted several experiments on information retrieval to evaluate the novelty and effectiveness of the GIS-KG. Results showed the robust support of GIS-KG for knowledge search of existing GIS topics and potential to explore emerging research themes. Numéro de notice : A2022-341 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2005795 Date de publication en ligne : 26/11/2021 En ligne : https://doi.org/10.1080/13658816.2021.2005795 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100515
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 873 - 897[article]Enriching the metadata of map images: a deep learning approach with GIS-based data augmentation / Yingjie Hu in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
![]()
[article]
Titre : Enriching the metadata of map images: a deep learning approach with GIS-based data augmentation Type de document : Article/Communication Auteurs : Yingjie Hu, Auteur ; Zhipeng Gui, Auteur ; Jimin Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 799 - 821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] descripteur
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] image cartographique
[Termes IGN] métadonnées
[Termes IGN] projection
[Termes IGN] système d'information géographique
[Termes IGN] Web Map Service
[Termes IGN] web mappingRésumé : (auteur) Maps in the form of digital images are widely available in geoportals, Web pages, and other data sources. The metadata of map images, such as spatial extents and place names, are critical for their indexing and searching. However, many map images have either mismatched metadata or no metadata at all. Recent developments in deep learning offer new possibilities for enriching the metadata of map images via image-based information extraction. One major challenge of using deep learning models is that they often require large amounts of training data that have to be manually labeled. To address this challenge, this paper presents a deep learning approach with GIS-based data augmentation that can automatically generate labeled training map images from shapefiles using GIS operations. We utilize such an approach to enrich the metadata of map images by adding spatial extents and place names extracted from map images. We evaluate this GIS-based data augmentation approach by using it to train multiple deep learning models and testing them on two different datasets: a Web Map Service image dataset at the continental scale and an online map image dataset at the state scale. We then discuss the advantages and limitations of the proposed approach. Numéro de notice : A2022-258 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/13658816.2021.1968407 En ligne : https://doi.org/10.1080/13658816.2021.1968407 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100231
in International journal of geographical information science IJGIS > vol 36 n° 4 (April 2022) . - pp 799 - 821[article]Architecture for semantic web service composition in spatial data infrastructures / Deniztan Ulutaş Karakol in Survey review, vol 54 n° 382 (January 2022)
![]()
[article]
Titre : Architecture for semantic web service composition in spatial data infrastructures Type de document : Article/Communication Auteurs : Deniztan Ulutaş Karakol, Auteur ; Cetin Cömert, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] accès aux données localisées
[Termes IGN] conception orientée utilisateur
[Termes IGN] langage naturel (informatique)
[Termes IGN] ontologie
[Termes IGN] OWL
[Termes IGN] web sémantiqueRésumé : (auteur) The importance of geospatial data has rendered it to be used in decision-making in both public and private sectors. The purpose of this study was to employ Semantic Web Technology (SWT) for the problems of Web Service Composition (WSC) in the context of Spatial Data Infrastructures (SDI). Some of these problems are identifying the workflow sequence and the user goal, discovering services according to service parameters, and matching these parameters. As a suggestion for the solution of all these problems a semi-automated WSC architecture was proposed in this study. In terms of architecture, users state their ‘goal’ with a natural language sentence. By semantically matching this sentence with a Spatial Services Ontology (SSO), the corresponding ‘abstract’ WSC was ‘located’ and the ‘concrete’ WSC was formed. Although there are still problems waiting to be solved due to the scope of the work, this study makes a valuable contribution to the area. Numéro de notice : A2022-110 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2020.1858255 Date de publication en ligne : 25/12/2020 En ligne : https://doi.org/10.1080/00396265.2020.1858255 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99627
in Survey review > vol 54 n° 382 (January 2022) . - pp 1 - 16[article]Building a collaborative online catalogue of geoportals in Brazil / Eduardo Silverio da Silva in Boletim de Ciências Geodésicas, vol 27 n° 4 ([01/12/2021])
![]()
[article]
Titre : Building a collaborative online catalogue of geoportals in Brazil Type de document : Article/Communication Auteurs : Eduardo Silverio da Silva, Auteur ; Silvana Philippi Camboim, Auteur Année de publication : 2021 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] Brésil
[Termes IGN] catalogue de données localisées
[Termes IGN] géoportail
[Termes IGN] infrastructure nationale des données localisées
[Termes IGN] recherche d'information géographique
[Termes IGN] WebSIGRésumé : (auteur) It is currently possible to account for several institutions with geographic data shared through the INDE portal, with more than half of it being from federal jurisdiction. However, there are subnational geoportals not integrated with this infrastructure, which is difficult to quantify. Therefore, the research problem of this study is finding the state of subnational geographic viewers’ availability, with the general objective of producing a Brazilian panorama and to identify factors that facilitate this availability. A research methodology based on different sources was applied in 27 states and 999 municipalities. As a result, we identified 17 regional, 82 state, and 274 municipal geoportals, with the highest concentration in the South and Southeast regions and lowest in the Northern region. In order to find factors related to geoportals availability, twenty characteristics of each municipality were collected, and Pearson coefficients were calculated, revealing significant correlations for population, economic and tax factors, and non-significant correlations for location factors. This acquired information is essential for the community and must be kept up to date. For this, an online collaborative map based on free software was created, allowing access without registration for data visualization and the registration of users for sending updates to the map. Numéro de notice : A2021-960 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1590/s1982-21702021000400026 Date de publication en ligne : 17/12/2021 En ligne : https://doi.org/10.1590/s1982-21702021000400026 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100072
in Boletim de Ciências Geodésicas > vol 27 n° 4 [01/12/2021] . - 16 p.[article]Fully automated pose estimation of historical images in the context of 4D geographic information systems utilizing machine learning methods / Ferdinand Maiwald in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
![]()
[article]
Titre : Fully automated pose estimation of historical images in the context of 4D geographic information systems utilizing machine learning methods Type de document : Article/Communication Auteurs : Ferdinand Maiwald, Auteur ; Christoph Lehmann, Auteur ; Taras Lazariv, Auteur Année de publication : 2021 Article en page(s) : n° 748 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] apprentissage automatique
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corrélation à l'aide de traits caractéristiques
[Termes IGN] échelle de temps
[Termes IGN] estimation de pose
[Termes IGN] image ancienne
[Termes IGN] image terrestre
[Termes IGN] métadonnées
[Termes IGN] modélisation 4D
[Termes IGN] patrimoine culturel
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] récupération de données
[Termes IGN] structure-from-motion
[Termes IGN] système d'information géographiqueRésumé : (auteur) The idea of virtual time machines in digital environments like hand-held virtual reality or four-dimensional (4D) geographic information systems requires an accurate positioning and orientation of urban historical images. The browsing of large repositories to retrieve historical images and their subsequent precise pose estimation is still a manual and time-consuming process in the field of Cultural Heritage. This contribution presents an end-to-end pipeline from finding relevant images with utilization of content-based image retrieval to photogrammetric pose estimation of large historical terrestrial image datasets. Image retrieval as well as pose estimation are challenging tasks and are subjects of current research. Thereby, research has a strong focus on contemporary images but the methods are not considered for a use on historical image material. The first part of the pipeline comprises the precise selection of many relevant historical images based on a few example images (so called query images) by using content-based image retrieval. Therefore, two different retrieval approaches based on convolutional neural networks (CNN) are tested, evaluated, and compared with conventional metadata search in repositories. Results show that image retrieval approaches outperform the metadata search and are a valuable strategy for finding images of interest. The second part of the pipeline uses techniques of photogrammetry to derive the camera position and orientation of the historical images identified by the image retrieval. Multiple feature matching methods are used on four different datasets, the scene is reconstructed in the Structure-from-Motion software COLMAP, and all experiments are evaluated on a newly generated historical benchmark dataset. A large number of oriented images, as well as low error measures for most of the datasets, show that the workflow can be successfully applied. Finally, the combination of a CNN-based image retrieval and the feature matching methods SuperGlue and DISK show very promising results to realize a fully automated workflow. Such an automated workflow of selection and pose estimation of historical terrestrial images enables the creation of large-scale 4D models. Numéro de notice : A2021-827 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10110748 Date de publication en ligne : 04/11/2021 En ligne : https://doi.org/10.3390/ijgi10110748 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98964
in ISPRS International journal of geo-information > vol 10 n° 11 (November 2021) . - n° 748[article]Integration of heterogeneous terrain data into Discrete Global Grid Systems / Mingke Li in Cartography and Geographic Information Science, vol 48 n° 6 (October 2021)
PermalinkA web GIS-based integration of 3D digital models with linked open data for cultural heritage exploration / Ikrom Nishanbaev in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
PermalinkImplementing a mass valuation application on interoperable land valuation data model designed as an extension of the national GDI / Arif Cagdas Aydinoglu in Survey review, Vol 53 n° 379 (July 2021)
PermalinkChinese tourists in Nordic countries: An analysis of spatio-temporal behavior using geo-located travel blog data / Yunhao Zheng in Computers, Environment and Urban Systems, vol 85 (January 2021)
PermalinkPermalinkReprésentation sémantique de données géospatiales au service de l'analyse de changements / Jordan Dorne (2021)
PermalinkPermalinkStreets of London: Using Flickr and OpenStreetMap to build an interactive image of the city / Azam Raha Bahrehdar in Computers, Environment and Urban Systems, vol 84 (November 2020)
PermalinkGNSS scale determination using calibrated receiver and Galileo satellite antenna patterns / Arturo Villiger in Journal of geodesy, vol 94 n° 9 (September 2020)
PermalinkData scale as cartography: a semi-automatic approach for thematic web map creation / Auriol Degbelo in Cartography and Geographic Information Science, vol 47 n° 2 (February 2020)
Permalink