Descripteur
Termes IGN > sciences humaines et sociales > géographie humaine > mobilité > mobilité territoriale
mobilité territorialeVoir aussi |
Documents disponibles dans cette catégorie (28)



Etendre la recherche sur niveau(x) vers le bas
Assessing COVID-induced changes in spatiotemporal structure of mobility in the United States in 2020: a multi-source analytical framework / Evgeny Noi in International journal of geographical information science IJGIS, vol 36 n° 3 (March 2022)
![]()
[article]
Titre : Assessing COVID-induced changes in spatiotemporal structure of mobility in the United States in 2020: a multi-source analytical framework Type de document : Article/Communication Auteurs : Evgeny Noi, Auteur ; Alexander Rudolph, Auteur ; Somayeh Dodge, Auteur Année de publication : 2022 Article en page(s) : pp 585 - 616 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] autocorrélation spatiale
[Termes IGN] comportement
[Termes IGN] données multisources
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] Etats-Unis
[Termes IGN] hétérogénéité spatiale
[Termes IGN] maladie virale
[Termes IGN] mobilité
[Termes IGN] mobilité territorialeRésumé : (auteur) The COVID-19 pandemic resulted in profound changes in mobility patterns and altered travel behaviors locally and globally. As a result, movement metrics have widely been used by researchers and policy makers as indicators to study, model, and mitigate the impacts of the COVID-19 pandemic. However, the veracity and variability of these mobility metrics have not been studied. This paper provides a systematic review of mobility and social distancing metrics available to researchers during the pandemic in 2020 in the United States. Twenty-six indices across nine different sources are analyzed and assessed with respect to their spatial and temporal coverage as well as sample representativeness at the county-level. Finally global and local indicators of spatial association are computed to explore spatial and temporal heterogeneity in mobility patterns. The structure of underlying changes in mobility and social distancing is examined in different US counties and across different data sets. We argue that a single measure might not describe all aspects of mobility perfectly. Numéro de notice : A2022-207 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2005796 Date de publication en ligne : 21/12/2021 En ligne : https://doi.org/10.1080/13658816.2021.2005796 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100023
in International journal of geographical information science IJGIS > vol 36 n° 3 (March 2022) . - pp 585 - 616[article]Changing mobility patterns in the Netherlands during COVID-19 outbreak / Sander Van Der Drift in Journal of location-based services, vol 16 n° 1 (March 2022)
![]()
[article]
Titre : Changing mobility patterns in the Netherlands during COVID-19 outbreak Type de document : Article/Communication Auteurs : Sander Van Der Drift, Auteur ; Luc Wismans, Auteur ; Marie-José Olde-Kalter, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 24 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] bicyclette
[Termes IGN] comportement
[Termes IGN] épidémie
[Termes IGN] estimation bayesienne
[Termes IGN] mobilité territoriale
[Termes IGN] Pays-Bas
[Termes IGN] téléphone intelligent
[Termes IGN] transport
[Termes IGN] transport public
[Termes IGN] travail à domicile
[Termes IGN] véhicule automobileRésumé : (auteur) The COVID-19 outbreak and associated measures taken had an enormous impact on society as well as a disruptive, but not necessarily negative, impact on mobility. The Ministry of Infrastructure and Water Management received the most recent insights from the Dutch Mobility Panel (DMP) on a weekly basis. These insights were used to monitor the travel behaviour and to analyse changes in the behaviour of different groups and usage of modes of transport during COVID-19. The analysis shows an enormous decrease in travel at the beginning of the implementation of the so-called ‘intelligent’ lockdown and gradual increase again towards comparable levels as before this ‘intelligent lockdown, although the distribution over time, motives and used modes has changed. It becomes clear that not everyone needs to travel during peak hours and commuter travel is also not the main reason for the increase in car usage. Furthermore, cycling has shown to be an alternative option for travellers and public transport is hardly used anymore. If it is possible to sustain the lower level of car usage and integrate public transport as an important alternative for travel again, the COVID-19 impact on mobility could have a substantial remaining positive impact on mobility. Numéro de notice : A2022-391 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/17489725.2021.1876259 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1080/17489725.2021.1876259 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100682
in Journal of location-based services > vol 16 n° 1 (March 2022) . - pp 1 - 24[article]Novel model for predicting individuals’ movements in dynamic regions of interest / Xiaoqi Shen in GIScience and remote sensing, vol 59 n° 1 (2022)
![]()
[article]
Titre : Novel model for predicting individuals’ movements in dynamic regions of interest Type de document : Article/Communication Auteurs : Xiaoqi Shen, Auteur ; Wenzhong Shi, Auteur ; Pengfei Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 250 - 271 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] chaîne de Markov
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] extraction de données
[Termes IGN] migration humaine
[Termes IGN] mobilité territoriale
[Termes IGN] modèle de simulation
[Termes IGN] réseau social
[Termes IGN] zone d'activité économique
[Termes IGN] zone d'intérêtRésumé : (auteur) The increasing amount of geotagged social media data provides a possible resource for location prediction. However, existing location prediction methods rarely incorporate temporal changes in mobility patterns, which could lead to unreliable predictions. In particular, human mobility patterns have changed greatly in the COVID-19 era. We propose a novel model to predict individuals’ movements in dynamic regions of interest (ROIs), taking into account changes in activity areas and movement regularity. To address changes in the activity areas, we design a new updating strategy that can ensure the realistic extraction of an individual’s ROIs. Then, we develop an integration model for changes in the movement regularity based on two newly proposed prediction methods that consider both rapid and slow changes. The proposed integration model is evaluated based on five real-world social media datasets; three Weibo datasets related to COVID-19 collected in three Chinese cities, one Twitter dataset collected in New York and one dense GPS dataset. The results demonstrate that the proposed model can achieve better performances than state-of-the-art models, especially when mobility patterns change greatly. Combined with related pandemic data, this study will benefit pandemic prevention and control. Numéro de notice : A2022-131 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15481603.2022.2026637 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1080/15481603.2022.2026637 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99719
in GIScience and remote sensing > vol 59 n° 1 (2022) . - pp 250 - 271[article]Contextual location recommendation for location-based social networks by learning user intentions and contextual triggers / Seyyed Mohammadreza Rahimi in Geoinformatica [en ligne], vol 26 n° 1 (January 2022)
![]()
[article]
Titre : Contextual location recommendation for location-based social networks by learning user intentions and contextual triggers Type de document : Article/Communication Auteurs : Seyyed Mohammadreza Rahimi, Auteur ; Behrouz Far, Auteur ; Xin Wang, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] comportement
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] covariance
[Termes IGN] données spatiotemporelles
[Termes IGN] historique des données
[Termes IGN] interface web
[Termes IGN] mobilité territoriale
[Termes IGN] prise en compte du contexte
[Termes IGN] réseau social géodépendant
[Termes IGN] service fondé sur la position
[Termes IGN] système de recommandationRésumé : (auteur) Location recommendation methods suggest unvisited locations to their users. Many existing location recommendation methods focus on the spatial, social and temporal aspects of human movements. However, contextual information is also invaluable to location recommendation methods and has the great potential for explaining what triggers users to show different behaviors. CLR learns the response of the users to contextual variables based on their own history and the history of similar behaving users. In this paper, we propose a contextual location recommendation method named Contextual Location Recommendation (CLR) that learns the intention and spatial responses of users to various contextual triggers using the historical check-in and contextual information. CLR starts with a co-variance analysis to reduce dimensionality of the check-in data and then uses an optimized version of the random walk with restart to extract hidden user responses to contextual triggers. A tensor factorization is used to build a latent-factor model to predict the user’s intention response with the given set of contextual triggers. Based on the intention response of the user, a contextual spatial component identifies a set of matching locations accessible to the user by estimating the probability distribution of the location of the user and the popularity probability of locations under the contextual settings. Experimental results on three real-world datasets show that CLR improves the recommendation precision by 35% compared to the best-performing baseline recommendation method. Numéro de notice : A2022-203 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-021-00437-y Date de publication en ligne : 02/06/2021 En ligne : https://doi.org/10.1007/s10707-021-00437-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100008
in Geoinformatica [en ligne] > vol 26 n° 1 (January 2022) . - pp 1 - 28[article]Understanding and predicting the spatio-temporal spread of COVID-19 via integrating diffusive graph embedding and compartmental models / Tong Zhang in Transactions in GIS, vol 25 n° 6 (December 2021)
![]()
[article]
Titre : Understanding and predicting the spatio-temporal spread of COVID-19 via integrating diffusive graph embedding and compartmental models Type de document : Article/Communication Auteurs : Tong Zhang, Auteur ; Jing Li, Auteur Année de publication : 2021 Article en page(s) : pp 3025 - 3047 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] maladie virale
[Termes IGN] mobilité territoriale
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] outil d'aide à la décision
[Termes IGN] quartier
[Termes IGN] réseau de transport
[Termes IGN] risque sanitaire
[Termes IGN] surveillance sanitaireRésumé : (Auteur) In order to find useful intervention strategies for the novel coronavirus (COVID-19), it is vital to understand how the disease spreads. In this study, we address the modeling of COVID-19 spread across space and time, which facilitates understanding of the pandemic. We propose a hybrid data-driven learning approach to capture the mobility-related spreading mechanism of infectious diseases, utilizing multi-sourced mobility and attributed data. This study develops a visual analytic approach that identifies and depicts the strength of the transmission pathways of COVID-19 between areal units by integrating data-driven deep learning and compartmental epidemic models, thereby engaging stakeholders (e.g., public health officials, managers from transportation agencies) to make informed intervention decisions and enable public messaging. A case study in the state of Colorado, USA was performed to demonstrate the applicability of the proposed transmission modeling approach in understanding the spatio-temporal spread of COVID-19 at the neighborhood level. Transmission path maps are presented and analyzed, demonstrating their utility in evaluating the effects of mitigation measures. In addition, integrated embeddings also support daily prediction of infected cases and role analysis of each area unit during the transmission of the virus. Numéro de notice : A2021-932 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12803 Date de publication en ligne : 16/07/2021 En ligne : https://doi.org/10.1111/tgis.12803 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99447
in Transactions in GIS > vol 25 n° 6 (December 2021) . - pp 3025 - 3047[article]Understanding collective human movement dynamics during large-scale events using big geosocial data analytics / Junchuan Fan in Computers, Environment and Urban Systems, vol 87 (May 2021)
PermalinkA comprehensive framework for studying diffusion patterns of imported dengue with individual-based movement data / Haiyan Tao in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
PermalinkL’accessibilité ferroviaire à Paris des grandes aires urbaines françaises : approche par la time geography / Laurent Chapelon in Mappemonde [en ligne], n° 127 (juillet 2019)
PermalinkPermalinkPermalinkDistributed processing of big mobility data as spatio-temporal data streams / Zdravko Galić in Geoinformatica [en ligne], vol 21 n° 2 (April - June 2017)
PermalinkPotentiel des données géolocalisées issues de la foule pour les questions de mobilité et tourisme : quelques exemples issus de la littérature / Laurence Jolivet (2017)
PermalinkDéveloppement d’un outil de webmapping pour l’optimisation de l’offre de soins en dialyse / Clémentine Chasles (2016)
PermalinkPermalinkRapport d'activité 2015, Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux / Institut français des sciences et des technologies des transports, de l'aménagement et des réseaux (2016)
Permalink